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Abstract

Recently, distributed optimization became more and more popular due to the in-
crease in available training data and available computing power. There exist many
distributed variants to classical optimization algorithms like Distributed Gradient De-
scent or Distributed ADMM but their theory often requires that computation nodes
run synchronously. That means, for each iteration, all nodes must finish with their
local computation and the algorithm must coordinate all nodes. This can become a
bottleneck when there are slow nodes within the network, when communication breaks
down or when the overhead of coordination becomes too large. Asynchronous optimiza-
tion algorithms have gained attention within the distributed optimization community
because they often overcome this bottleneck. In this thesis, we give an overview of
centralized, asynchronous algorithms and perform various experiments on computer
vision tasks. We look into their convergence theory but also provide examples of how
we transform a given problem into a distributed one. Last but not least, we use a real
computer cluster of several GPUs to optimize over a function asynchronously.
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1 Introduction

T
oday, data plays a more and more important role in research, industry, and
society. Over time, advances in hardware made it possible to solve problems
by retrying existing methods or developing new ideas that were not possible

in the past. Due to hardware advances in faster and larger storage, it became possible
to store data that could not be stored previously because of high costs, data decay or
slow reading/writing speed. Considering “Industry 4.0”, many (industrial) machines
started to persist their sensor data in order to make them available for analytics [Mob02].
Not only data storage but also processing power increased, especially if we look at
Graphics Processing Units (GPUs). This made it possible to revisit existing methods in
Machine Learning and apply them again. For instance, it is well known that “Neural
Networks” (NN) were proposed by [Ros58] in 1958 but could not solve many problems
efficiently with the available hardware back then. Only recently, with the growth of
data and computing power, Neural Networks started to outperform well-established
methods such as the Support Vector Machine (SVM) in areas like Computer Vision,
as famously shown in [KSH12]. Additionally, faster internet connections and general
internet availability allow us to process data from various sources and distribute it
again. For example, GPS systems within smartphones make it possible to detect traffic
jams and can help the driver to find a faster route.

In order to solve a certain problem, we need to collect the related data, give it to a
model and train it until it solves our problem sufficiently. But, depending on the size of
the data, its structure, and the available hardware, the training or optimization process
can vary from seconds to even months. Often, training time is constrained and must
not exceed a certain threshold so one needs to find a way to speed up the process. A
very common and natural way to do so is by distributing the total work to multiple
machines and splitting the full optimization problem into smaller parts. This makes
sense when available hardware resources are not fully utilized yet or when the problem
is so big that one machine cannot solve it on its own. Or, the training data might be
already distributed and cannot be easily collected.

For this reason, many distributed optimization algorithms have been proposed in the
literature and we refer to the surveys [Ber15], [FSS15], [BCN18a] and [Yan+19] for an

1



1 Introduction

introduction to optimization and distributed optimization. However, we need to be
aware of the additional complexity that comes with it. First, we need to verify that
a given problem can be solved in a distributed way or we need to reformulate an
equivalent problem that enables distribution. Not seldom, this reformulation makes the
problem more difficult by introducing additional parameters so one needs to estimate
whether distributed computing makes sense or not. Second, distribution requires
sending and receiving data from other nodes. In general, nodes could be threads, CPUs
or different machines. In this thesis, we mostly focus on distribution onto different
computers. Therefore, we must establish connections between them and coordinate
them with each other to send the right information at the right time. Third, because
communication networks are often fragile, we need to be resilient against errors like
communication failures, node failures or slow responses from machines. Fourth, there
are different communication topologies that need to fit with the optimization algorithm
itself. For instance, an algorithm that uses a master-worker architecture performs
very badly (or not at all) if machines cannot communicate efficiently in a star-shaped
topology. All this contributes to slowing down the final distributed algorithm or making
it fail.

In our thesis, we are interested in the effects of weakening or even removing the coor-
dination requirement of centralized distributed algorithms between nodes, i.e. when
nodes run asynchronously to each other. In specific, we look into the consequences
when not all machines finished their task, when communication fails or when workers
can only use outdated information. We introduce different categories of this asyn-
chronous behavior and evaluate their usefulness in real life. Not only, we present the
theory of existing asynchronous algorithms but we also show how we can distribute
a problem and utilize an asynchronous algorithm and how it affects the performance
and final results.

Continuing in this Chapter 1, we provide an overview of asynchronous algorithms
in general and discuss differences between them. Starting in Chapter 2, we highlight
three asynchronous versions of centralized algorithms, namely asynchronous Stochas-
tic Gradient Descent, asynchronous Block Coordinate Descent and of asynchronous
Alternating Direction Method of Multipliers and reproduce their convergence proofs to
see different proof techniques in dealing with asynchronicity. In the practical Chapter
3, we show how we can solve a logistic regression and an image segmentation problem
by using a distributed algorithm. Last but not least, in Chapter 4 we conclude our
thesis.
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1 Introduction

(a) centralized, star shape topol-
ogy

(b) decentralized topology (c) ring topology

Figure 1.1: Examples of common communication topologies

1.1 Centralized and Decentralized Algorithms

When we speak of distributed algorithms, one way to categorize them is to look at their
global topology, i.e. how nodes are connected with each other. We represent the com-
munication by a graph where nodes represent physical machines and edges represent
a possible flow of information. Figure 1.1 shows some common topologies.

On the one hand, a centralized algorithm consists of a master node coordinating several
worker nodes. The master node sends out its current state, delegates new tasks to its
workers and collects the results from them at a later point. Worker nodes solve the
given task and send the result back to the master. Notice that communication is limited
between only the master and worker. We refer to it as the “star” shaped topology.

On the other hand, a decentralized algorithm does not have a master node and nodes
communicate freely with each other depending on the given network. Even though the
focus of this thesis is on centralized algorithms, we want to name a few decentralized
methods from the literature.

The authors in [NO09][YLY16][ZY18] considered the algorithms “DGD” and “Prox-
DGD” and introduced the analysis for a distributed gradient descent algorithm where
the topology is given by a mixing matrix. Their method is inspired by the “Distributed
Averaging” algorithm [XB04][BDX03] but can optimize over convex and nonconvex
problems. In EXTRA [Shi+15b], PG-EXTRA [Shi+15a] and Asynchronous EXTRA
[Wu+18] the initial DGD method has been extended to achieve a faster convergence. In
Hogwild! [Niu+11] and AD-PSGD [Lia+17] the topology is represented directly by a
graph and for each update iteration, a random edge is sampled to simulate the flow of
communication.

3



1 Introduction

All previous algorithms collect and aggregate gradients from their neighbor nodes to
perform an update on the optimization variable. In contrast to that, we can also solve
a local optimization problem directly and aggregate the resulting models which are
common in algorithms like ADMM [Boy+11]. Decentralized ADMM [Shi+14], Async
ADMM [WO13] and ASYMM [Far+19] encode the topology by adding new constraints
to the problem. For example, [Shi+14] introduces an auxilary variable xi for each node
i and zij for each edge between node i and j. Then, it enforces equality xi = zij and
xj = zij for all edges.

Due to hardware or software errors, not seldom communication between two nodes
can break down. This inspired [NOS17] and [HC17] to consider time-varying graphs
that model these real-life scenarios better.

1.2 Different Kinds of Asynchronicities

Before we explore various distributed, asynchronous algorithms, we first need to get
a basic understanding of the term “asynchronicity” because it can refer to different
kinds of degrees of the same idea. In this section, we introduce these different degrees
and point out their shortcomings in modeling. Needless to say, one needs to be careful
and distinguish between the theoretical framework and the real application. While in
theory, an (asynchronous) algorithm might converge, in practice it might not be the
case because the model does not capture the real world.

We start with the lowest kind of asynchronicity, namely no asynchronous behavior at
all.

1.2.1 Synchronous Coordination

In a synchronous (distributed and centralized) application, the master node always
waits until all workers report back with a result. The master proceeds with the
most recent results from the workers and the workers always have the most recent
information from the master. Assuming that all nodes always have access to the most
recent information is a very common assumption since it often simplifies the analysis,
as we see in Section 2.1. In addition, it is not unreasonable to think that having always
the most recent data will provide good results. Figure 1.2 visualizes a very general
centralized, synchronous algorithm. Colored boxes represent calculation time.

On the downside of this approach, collecting results from all workers or distributing
new tasks to all workers might not always be fast or even possible. The whole calculation
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1 Introduction

Figure 1.2: Example calculation time of master and worker nodes

time is bottlenecked by the slowest worker in the network. Notice that the calculation
time of the master in Figure 1.2 only starts once the calculation of workers 1, 2 and
3 have finished. Then, the workers stay idle until the calculation of the master node
finishes. This can result in big idle times for faster nodes. Even worse, due to physical
network issues, not seldom, messages with results get lost. Without a meaningful
mechanism of recovery, a communication error could stop the whole optimization
procedure.

1.2.2 Partial Barrier & Bounded Delay

One method to cope with the bottlenecks mentioned above is by introducing a “partial
barrier” and a “bounded delay” as it is done in [ZK14]. Instead of waiting for all K
workers to finish a given task, we could also just wait for B ≤ K workers to finish. That
way, we reduce the idle time of fast workers because the master node does not have
to wait for a slow worker to finish in order to define and send out a new job. Setting
B = K gives us a synchronous version.

Problems might arise when one worker is constantly slower than other ones. If we only
define a partial barrier B, then fast workers could skew the final results because they
were considered much more often than slow ones. To prevent this, we also define a
“bounded delay” τ that ensures within τ master iterations, all workers have contributed
their results to the master at least once. Figure 1.3 shows how a partial barrier and a
bounded delay work together.

For the first two master iterations, only the master uses the results from worker 1 and
2, because worker 3 is still busy. But, because we defined a low partial barrier, in the
third master iteration we actually have to wait for worker 3 to finish before the master
can continue. Notice how the calculation of the master and of a worker (here worker 3)
can run in parallel now.

5



1 Introduction

Figure 1.3: Partial barrier and bounded delay example

1.2.3 Update Sets

A very similar but slightly more general concept is “update sets”. Instead of waiting
for B workers to finish their calculations, for each iteration t we define a subset of
nodes C t ⊆ {0, . . . , K} that perform an update where k = 0 represents the master
node and 1 ≤ k ≤ K represents worker nodes. To enforce synchronicity, we simply
set C t = {0, . . . , K} for all iterations. Update sets are used directly in Flexible ADMM
[HLR16a] and variants are used in Hogwild! [Niu+11], Async ADMM [WO13] and
ASYMM [Far+19]. To deal with the problem of very infrequent updates by slow workers
or even a slow master, we need to introduce the “essentially cyclic update rule”. For
each iteration t, we require that

T⋃
i=1

C t+i = {1, . . . , K} ∀t

for a given interval of T.

Assume we have the situation as visualized in Figure 1.4.

Figure 1.4: Possible updates by an algorithm

By evaluating when each node starts and finishes their current calculation, we can
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derive these update sets (Figure 1.5), where each block represents an element of that
set and each column symbolizes a set at a given time.

Figure 1.5: Update set perspective of the previously mentioned situation

But, notice that there is still quite a lot of idle time in the example. If we use an
algorithm that tries to reduces this idle time, then update sets might not be the right
modeling choice as we will see in the next section.

1.2.4 Delays

Another way to simulate asynchronicity is by introducing “delays”. Here, we allow each
update to use “older” or “delayed” variables from previous iterations. For instance,
in iteration t we draw a delay τt ≥ 1 and perform an update using the variable xt−τt

instead of xt−1. Synchronous behaviour is achieved by setting τt = 1. In the previously
discussed update sets modeling, the master node always refers to the most recent data
that is available. However, consider following situation that could occur in Figure
1.6:

Figure 1.6: Example where update sets cannot model the real world

By taking a closer look at the first master iteration and the first worker 3 iteration, we
run into the problem that we cannot capture this situation by just using update sets. If

7
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we put the first iteration of worker 3 into a set before the first iteration of the master,
then the master would use the result of worker 3. But, if we put it after the master
iteration, then worker 3 would use the result of the master which does not model the
given situation as well. Clearly, we need a different approach. By using delays we
generalize the concept of update sets and also solve our problem above. For example,
Figure 1.7 visualizes the same situation but using a block representation where each
block represents an update step. The gray arrows indicate the dependencies of the
updates to previous ones and the two red arrows provide the solution to our initial
problem from Figure 1.6.

Figure 1.7: Block representation for delays

Delays are used in Asynchronous EXTRA [Wu+18], AsySG-con [Lia+15], AD-PSGD
[Lia+17], Async-BCD [LW14] and Async PADMM [Hon18].

1.3 Theoretical Framework vs. Practical Implementation

Notice that we often differentiate between the theoretical algorithm and its practical
implementation. For example, in practice, we use one implementation for the master
node and one implementation for the worker nodes while the theoretical description
unifies both into one algorithm. In fact, this is the case for all algorithms discussed
previously and the ones we look into detail in Chapter 2. We split between these two
perspectives because a unified description simplifies the theoretical analysis while still
staying valid in practice.

In our “simulated delays” experiments in Section 3.1, 3.2.2 and 3.3.6 we actually
implement the theoretic description because we only simulate possible delays. But, in
the “real delays” experiments (Section 3.2.3 and 3.3.7) we use a practical implementation
and differentiate between master and workers.

Throughout this thesis, we simulate delays by using outdated variables with a specific
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age. Every iteration, we store the updated variables in a queue. When we refer to an
(outdated) variable, we sample a random element from that queue. For instance, if we
want to simulate the worst-case delay scenario, we always sample the last element from
that queue to get the most outdated variable. Or, we sample an element by drawing
a random index from a uniform distribution to simulate a noisy but more realistic
setting. Further research can look into other sampling strategies for evaluation that
better model the real world.

1.4 Overview on Distributed Algorithms

Finally, we summarize all previously mentioned algorithms and give an overview in
Table 1.1. Namely, what kind of problems they can solve, how they perform their
optimization, on what kind of topology they work on and which asynchronicity they
use.

9
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2 Theory of Asynchronous Algorithms

A
dding asynchronicity adds complexity to the underlying theory of an algo-
rithm. In this chapter, we are interested in the assumptions of asynchronous
algorithms and we present methods on prooving convergence. First, we

look at synchronous SGD and ADMM. Then, we present an asynchronous version of
SGD, asynchronous Block Coordinate Descent and finally an asynchronous version of
ADMM.

2.1 Synchronous Algorithms

Before discussing asynchronous distributed algorithms we give some insights into
synchronous ones. First, we look at the convergence of the well understood Stochastic
Gradient Descent (SGD) optimizer [RM51]. Then, we summarize the main idea of the
ADMM method [Boy+11] and introduce the Consensus Problem 2.1.3 that we will later
solve in the practical Section 3.2.

Even though these two algorithms have not been designed for a distributed computing
network, the theory behind them still holds if they run in synchronization, i.e. as long
as the order of iterations and variables are not violated. From a theoretical perspective,
they appear to run sequentially, even though some calculations happen in parallel.

2.1.1 Stochastic Gradient Descent (SGD)

SGD [RM51] is one of the most popular optimizers due to its simplicity and great
performance for learning tasks [LBH15]. In addition, many introductions to Machine
Learning cover SGD, for example, [GBC16]. In this section, we present one important
result from [BCN18b] that explains how the learning rate affects the convergence of
SGD. To begin with, consider the Empirical Risk Problem 2.1.1.

Problem 2.1.1 (Empirical Risk).

min
x∈Rd

Eξ [F(x; ξ)]

11



2 Theory of Asynchronous Algorithms

where F is smooth and ξ is sampled from a given distribution.

Let T be the number of iterations, n the number of data samples available, γk a learning
rate and G(x, ξ) an update direction, for example the gradient of F(x, ξ). Then, we can
solve Problem 2.1.1 by using the SGD Algorithm 1.

Algorithm 1: Stochastic Gradient Descent

1 Choose initial x0

2 for t = 0, 1, . . . , T − 1 do
3 Choose sample data St ⊆ {1, . . . , n}
4 Compute stochastic gradient ∆t = ∑i∈St

G(xt, ξi)

5 Choose step size γt > 0
6 Compute new iterate xt+1 ← xt − αt∆t

7 end

The description does not explicitly tell us how to utilize it in a distributed setting. The
idea is to distribute the gradient computation (line 4) onto machines with different
samples ξ. Then, the master node collects all gradients G from its workers, sums them
into an update direction ∆ and computes the new iterate xt+1. After distributing the
new variable to all workers, the iteration starts again. Remember that each node needs
to finish its calculation first before they can be aggregated by the master. Otherwise,
we would violate line 4 and the Theorem 2.1.1 would fail.

Before we show the convergence theorem, we prove a short lemma first.

Lemma 2.1.1. Let F : Rd → R be continuously differentiable and let the gradient ∇F : Rd →
Rd be L-Lipschitz continuous, that is

‖∇F(v)−∇F(w)‖2 ≤ L‖v− w‖2 for all {v, w} ⊂ Rd

Then, the following is true for all {v, w} ⊂ Rd

F(v) ≤ F(w) +∇F(w)T(v− w) +
1
2

L‖v− w‖2
2

12
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Proof.

F(w) = F(v) +
∫ 1

0

∂F(v + t(w− v))
∂t

dt

= F(v) +∇F(v)T(w− v) +
∫ 1

0
(∇F(v− t(w− v)))T (w− v)dt

≤ F(v) +∇F(v)T(w− v) +
∫ 1

0
L‖t(w− v)‖‖w− v‖dt

= F(v) +∇F(v)T(w− v) +
1
2

L‖w− v‖2

The lemma hints that the convergence is not only depending on the learning rate γt

but also on the smoothness of the gradients.

Theorem 2.1.1. Let F : Rd → R be continuously differentiable and let the gradient∇F : Rd →
Rd be L-Lipschitz continuous. Then, the iterates of Stochastic Gradient Descent (SGD, 1) sat-
isfy the following inequality for all k ∈N:

E[F(xt+1)]− F(xt) ≤ −γt∇F(xt)
TEΞt [∆t] +

1
2

γ2
t LEΞt [‖∆t‖2]

where Ξt is the set of all random variables {i ∈ St : ξi}.

Proof. Due to the Lipschitz-continuous gradient assumption and Lemma 2.1.1 the first
inequality holds. Then we insert Algorithm 1 and take expectation with respect to Ξt.

F(xt+1)− F(xt) ≤ ∇F(xt)
T(xt+1 − xt) +

1
2

L‖xt+1 − xt‖2

≤ −γt∇F(xt)
T∆t +

1
2

γ2
t L‖∆t‖2

E[F(xt+1)]− F(xt)
∗
≤ −γt∇F(xt)

TEΞt [∆t] +
1
2

γ2
t LEΞt [‖∆t‖2]

Because we are minimizing the objective function F, we want that E[F(xt+1)] <

E[F(xt)]. That implies that the RHS of (∗) must be negative, thus γt∇F(xt)TEΞt [∆t] >
1
2 γ2

t LEΞt [‖∆t‖2]. We see that this can be influenced by the sequence γt. Therefore, we
minimize the problem when we choose γ appropiatly.

13
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2.1.2 ADMM and the Consensus Problem

Another very popular and well-studied algorithm is the “Alternating Direction Method
of Multipliers” method (ADMM) [Boy+11]. In contrast to SGD, ADMM takes a problem,
formulates an equivalent primal-dual problem and solves it by optimizing over the
primal and dual variables in an alternating way. For the actual and exact convergence
analysis, we refer to [Boy+11] and [PB+14] for a more general theory on proximal
algorithms. Here, we show the motivation for the update rules in ADMM.

Consider the following problem which is very common in computer vision.

Problem 2.1.2.

min
u∈Rn

F(Au) + G(u)

where F and G are convex, lower-semicontinous functions and A is a matrix.

The matrix A can make it difficult to optimize the variable u. However, we can derive
an equivalent problem by introducing the auxiliary variables v ∈ Rn and adding an
equality constraint. Then, we transform the constrained problem into an unconstrained
one.

min
u∈Rn

F(Au) + G(u)⇔ min
u,v∈Rn

F(v) + G(u) s.t. Au = v

⇔ min
u,v∈Rn

F(v) + G(u) + δ{Au− v = 0}

⇔ min
u,v∈Rn

max
p∈Rn

F(v) + G(u) + 〈p, Au− v〉

where δ{·} is the indicator function. In the last step, we introduced the dual variable
p ∈ Rn that enforces the equality constrained to be true. Adding an additional
augmentation term does not change the optimization problem but makes ADMM
converge in the end. Let τ > 0 and

min
u,v∈Rn

max
p∈Rn
Lτ(u, v; p) := F(v) + G(u) + {p, Au− v}+ τ

2
‖Au− v‖2

We call Lτ(u, v; p) the augmented Lagrangian. Optimizing over this term solves our
original Problem 2.1.2.

Each iteration of ADMM performs an exact, minimization step over u and v and
an inexact gradient ascend step over p. By choosing the right τ, we converge to a

14
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solution.

Algorithm 2: Alternating Direction Method of Multipliers

1 Choose initial u0, v0, p0 ∈ Rn

2 for t = 0, 1, . . . , T − 1 do
3 Compute primal variable ut+1 ∈ arg minu G(u) + 〈pt, Au〉+ τ

2‖Au− vt‖2

4 Compute primal variable vt+1 ∈ arg minv F(v)− 〈pt, v〉+ τ
2‖Aut+1 − v‖2

5 Compute dual variable pt+1 = pt + τ(Aut+1 − vt+1)

6 end

The solutions for the variables u, v and p highly depend on the difficulty of the original
objective functions F and G. Again, by the description of Algorithm 2 it is not easy to
see how one would derive a distributed version. To do this, we first need to ensure our
original problem can be reformulated as the Consensus Problem 2.1.3.

Problem 2.1.3 (Consensus Problem).

min
u∈Rn

f (x) := F(u) +
K

∑
k=1

Gk(u)

Assuming we have K workers, our goal is to separate the problem over the function
G such that each worker 1 ≤ k ≤ K can optimize over a specific Gk on its own. Then,
each worker returns a solution uk and the master aggregates all models and distributes
the work again. By introducing auxiliary and dual variables we transform the problem
similarly to before.

min
u∈Rn

f (x) := F(u) +
K

∑
k=1

Gk(u)

⇔ min
u0,{uk}∈Rn

F(u0) +
K

∑
k=1

Gk(uk) s.t. u0 = uk ∀1 ≥ k ≥ K

⇔ min
u0,{uk}∈Rn

max
{pk}∈Rn

F(u0) +
K

∑
k=1

Gk(uk) +
K

∑
k=1
〈pk, u0 − uk〉

⇔ min
u0,{uk}∈Rn

max
{pk}∈Rn

F(u0) +
K

∑
k=1

Gk(uk) +
K

∑
k=1
〈pk, u0 − uk〉+

τ

2

K

∑
k=1
‖u0 − uk‖2

⇔ min
u0,{uk}∈Rn

max
{pk}∈Rn

Lτ(u0, {uk}; {pk})

15
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and Lτ is the augmented Lagrangian

Lτ(u0, {uk}; {pk}) := F(u0) +
K

∑
k=1

Gk(uk) +
K

∑
k=1
〈pk, u0 − uk〉+

τ

2

K

∑
k=1
‖u0 − uk‖2

The iteration of ADMM changes to

Algorithm 3: ADMM for Consensus Problem

1 Choose initial u0
0, {u0

k}K
k=1, {p0

k}K
k=1

2 for t = 0, 1, . . . , T − 1 do
3 ut+1

0 ∈ arg minu F(u0) + ∑K
k=1〈pt

k, u0〉+ τ
2 ∑K

k=1 ‖u0 − ut
k‖2

4 for k = 1, 2, . . . , K do
5 ut+1

k ∈ arg minuk
G(uk)− 〈pt

k, uk〉+ τ
2 ∑K

k=1 ‖ut+1
0 − uk‖2

6 pt+1
k = pt

k + τ(ut+1
0 − ut+1

k )

7 end
8 end

Now, Algorithm 3 could be distributed by using a star-shaped communication network.
While the u0 “global” update needs the information from all uk and pk “local” updates,
the uk and pk updates only need their previous values and u0. That means, we can
interpret the u0 update as a way to aggregate the results of all workers and the
communication happens only between the master node and a worker node.

2.2 Asynchronous Stochastic Gradient Descent

To begin with, we present the Asynchronous Stochastic Gradient Descent algorithm
“AsySG-con” [Lia+15] which is a distributed extension to SGD [RM51]. We show its
convergence theory and also reproduce some of its results from the paper later in
Section 3.1. Proving their main Theorem 2.2.1 gives us a first insight on how to work
with delayed information.

Like many asynchronous algorithms, the idea behind AsySG-con is to parallelize the
work onto different machines or “workers” within a network and collect their results
as soon as possible, even if not all workers have finished. In specific, we distribute the
calculation of the gradient and let them run in parallel. Then, a master machine collects
all gradients, aggregates them and updates the optimization variable xk to xk+1. After
that, it distributes the new variable xk+1 to all workers over the network again and a
new iteration begins.
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We start by recalling Problem 2.1.1. Here, let F be smooth but possibly nonconvex.

min
x∈Rn

f (x) := Eξ [F(x; ξ)]

We claim that the following algorithm can solve our problem, i.e. it converges to a
solution. Let K be the number of maximum iterations, M be the number of the batch
size, {γk}K

k=1 be the learning rates for each iteration and τk,m be a delay for a given
iteration and data point within a batch.

Algorithm 4: Asynchronous Stochastic Gradient (AsySG-con)

1 Choose initial x0

2 for k = 0, 1, . . . , K− 1 do
3 Select mini-batch size M training samples ξk,1, . . . , ξk,M

4 Compute xk+1 ← xk − γk ∑M
m=1 G(xk−τk,m ; ξk,m)

5 end

We implement this algorithm for our experiments in Section 3.1 to validate the theory. In
Section 1.3 we argued that often algorithms differ between their theoretical description
and their actual implementation. Here, we see the first example. Obviously, the
description does not mention any worker or master nodes. But, due to the introduced
delays τk,m, it actually models many real-world implementations. It does enforce a
star-shaped topology due to the aggregation step in line 4.

Each iteration k performs a gradient descent update on xk using “old” gradient infor-
mation based on M training samples. Depending on how we implement the algorithm,
we end up with different values for τk,m.

To prove convergence, the authors in [Lia+15] make several assumptions

Assumption 2.2.1.

• (Unbiased Gradient): The stochastic gradients G(x; ξ) := ∇F(x; ξ) are unbiased, i.e.

∇ f (x) = Eξ [G(x; ξ)]

• (Bounded Variance): The variance of the stochastic gradients Var[G(x; ξ)] are bounded,
i.e.

Var[G(x; ξ)] = Eξ [‖G(x; ξ)−∇ f (x)‖2] ≤ σ2

17
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• (Lipschitz Continuous Gradients): The gradients∇ f (·) are Lipschitz continuous, i.e.
for all x, y ∈ Rn

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖

• (Indepencence): The random variables {ξk,m}k=K,m=M
k=0,m=1 are independent to each other

• (Bounded Delay): The delay variables τk,m are bounded, i.e.

max
k,m

τk,m ≤ T

We would like to highlight the last “bounded delay” assumption. It implies that at
any point our gradients are based on information not older than T iterations. In our
experiments later, we will take this assumption to the extreme by always picking the
highest delay.

Finally, we introduce the main convergence theorem for Algorithm 4.

Theorem 2.2.1. Assume that Assumption 2.2.1 is true and that the step size {γk}K
k=1 satisfies

for all k = 1, 2, . . .

LMγk + 2L2M2Tγk

T

∑
t=1

γk+t ≤ 1

Then, we have the following convergence,

1

∑K
k=1 γk

K

∑
k=1

γkE[‖∇ f (xk)‖] ≤
2( f (x1)− f (x∗)) + ∑K

k=1

(
γ2

k ML + 2L2M2γk ∑k−1
j=k−T γ2

j

)
σ2

M ∑K
k=1 γk

where x∗ denotes the optimal solution for Problem 2.1.1 and E(·) takes the expectation with
respect to all random variables in Algorithm 4.

There are several things to point out first before proving the theorem. First, the learning
rates γk are depending on the Lipschitz constant L, the batch size M and the maximum
delay of T to ensure convergence. In addition, γk must not be too large to fulfill
the inequality. Second, the convergence rate differs from many other optimization
algorithms. Because we are dealing with delayed gradients, we cannot ensure a decrease
in the objective after each iteration. Sometimes, we might notice an increase in the
objective function due to an old gradient. However, the convergence rate here states that
in average the gradients of the objective function are smaller than a constant value.
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Proof. First, we establish an upper bound for the expected difference between the
current function value f (xk) at iteration k and the function value f (xk+1) after applying
Algorithm 4 at iteration k + 1. Then, by using a telescopic sum we upperbound the
expected value function difference between iteration k = 1 and k = K + 1 and Theorem
2.2.1 follows.

Due to the L-Lipschitz continous gradients in Assumtion 2.2.1 and because of Algorithm
4, following inequality holds.

f (xk+1)− f (xk) ≤ 〈∇ f (xk), xk+1 − xk〉+
L
2
‖xk+1 − xk‖2

= −
〈
∇ f (xk), γk

M

∑
m=1

G(xk−τk,m ; ξk,m)

〉
+

γ2
k L
2

∥∥∥∥∥ M

∑
m=1

G(xk−τk,m ; ξk,m)

∥∥∥∥∥
2

= −Mγk

〈
∇ f (xk),

1
M

M

∑
m=1

G(xk−τk,m ; ξk,m)

〉

+
γ2

k L
2

∥∥∥∥∥ M

∑
m=1

G(xk−τk,m ; ξk,m)

∥∥∥∥∥
2

By taking the expected value with respect to the random variables ξk,∗ := {ξk,1, . . . , ξk,M},
we have

Eξk,∗ [ f (xk+1)− f (xk)] ≤ Eξk,∗

[
−Mγk

〈
∇ f (xk),

1
M

M

∑
m=1

G(xk−τk,m ; ξk,m)

〉

+
γ2

k L
2

∥∥∥∥∥ M

∑
m=1

G(xk−τk,m ; ξk,m)

∥∥∥∥∥
2]

Eξk,∗ [ f (xk+1)]− f (xk) ≤ −Mγk

〈
∇ f (xk),

1
M

M

∑
m=1
∇ f (xk−τk,m)

〉

+
γ2

k L
2

Eξk,∗

∥∥∥∥∥ M

∑
m=1

G(xk−τk,m ; ξk,m)

∥∥∥∥∥
2

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Because of the fact 〈a, b〉 = 1
2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2), we further derive

Eξk,∗ [ f (xk+1)]− f (xk)

≤ −Mγk

2

‖∇ f (xk)‖2 +

∥∥∥∥∥ 1
M

M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2

−
∥∥∥∥∥∇ f (xk)−

1
M

M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2

︸ ︷︷ ︸
T1


+

γ2
k L
2

Eξk,∗

∥∥∥∥∥ M

∑
m=1

G(xk−τk,m ; ξk,m)

∥∥∥∥∥
2


︸ ︷︷ ︸
T2

Now we upper bound T2. Notice that the following terms vanish due to our unbiased
gradients assumption.

Eξk,∗

[〈
M

∑
m=1

(
G(xk−τk,m ; ξk,m)−∇ f (xk−τk,m)

)
,

M

∑
m=1
∇ f (xk−τk,m)

〉]

=

〈
M

∑
m=1

(
Eξk,∗

[
G(xk−τk,m ; ξk,m)

]
︸ ︷︷ ︸

∇ f (xk−τk,m
)

−∇ f (xk−τk,m)
)

,
M

∑
m=1
∇ f (xk−τk,m)

〉

= 0

and

Eξk,∗ ∑
1≤m<m′≤M

〈
G(xk−τk,m ; ξk,m)−∇ f (xk−τk,m), G(xk−τk,m′

; ξk,m′)−∇ f (xk−τk,m′
)
〉

= Eξk,∗ ∑
1≤m<m′≤M

〈
Eξk,m

[
G(xk−τk,m ; ξk,m)

]
︸ ︷︷ ︸

∇ f (xk−τk,m
)

−∇ f (xk−τk,m), G(xk−τk,m′
; ξk,m′)−∇ f (xk−τk,m′

)

〉

= 0
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That gives us for T2:

T2 = Eξk,∗

∥∥∥∥∥ M

∑
m=1

G(xk−τk,m ; ξk,m)

∥∥∥∥∥
2


= Eξk,∗

∥∥∥∥∥ M

∑
m=1

(
G(xk−τk,m ; ξk,m)−∇ f (xk−τk,m)

)
+

M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2


= Eξk,∗

∥∥∥∥∥ M

∑
m=1

(
G(xk−τk,m ; ξk,m)−∇ f (xk−τk,m)

)∥∥∥∥∥
2
+

∥∥∥∥∥ M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2

+ 2 Eξk,∗

[〈
M

∑
m=1

(
G(xk−τk,m ; ξk,m)−∇ f (xk−τk,m)

)
,

M

∑
m=1
∇ f (xk−τk,m)

〉]
︸ ︷︷ ︸

=0

= Eξk,∗

[
M

∑
m=1

∥∥∥G(xk−τk,m ; ξk,m)−∇ f (xk−τk,m)
∥∥∥2
]
+

∥∥∥∥∥ M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2

+ 2 Eξk,∗ ∑
1≤m<m′≤M

〈
G(xk−τk,m ; ξk,m)−∇ f (xk−τk,m), G(xk−τk,m′

; ξk,m′)−∇ f (xk−τk,m′
)
〉

︸ ︷︷ ︸
=0

≤ Mσ2 +

∥∥∥∥∥ M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2

Now, we bound T1:

T1 =

∥∥∥∥∥∇ f (xk)−
1
M

M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2

=
1

M2

∥∥∥∥∥ M

∑
m=1

(
∇ f (xk)−∇ f (xk−τk,m)

)∥∥∥∥∥
2

≤ 1
M

M

∑
m=1

∥∥∥∇ f (xk)−∇ f (xk−τk,m)
∥∥∥2

︸ ︷︷ ︸
≤L2‖xk−xk−τk,m

‖2

≤ L2 1
M

M

∑
m=1
‖xk − xk−τk,m‖

2

= L2 max
1≤k≤M

‖xk − xk−τk,m‖
2

= L2‖xk − xk−τk,µ‖
2
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where we set µ := arg max1≤k≤M ‖xk − xk−τk,µ‖2. Next,

T1 ≤ L2‖xk − xk−τk,µ‖
2

= L2

∥∥∥∥∥∥
k−1

∑
j=k−τk,µ

(xj+1 − xj)

∥∥∥∥∥∥
2

= L2

∥∥∥∥∥∥
k−1

∑
j=k−τk,µ

γj

M

∑
m=1

G(xj−τj,m ; ξ j,m)

∥∥∥∥∥∥
2

= L2

∥∥∥∥∥∥
k−1

∑
j=k−τk,µ

γj

M

∑
m=1

(
G(xj−τj,m ; ξ j,m)−∇ f (xj−τj,m)

)
+

k−1

∑
j=k−τk,µ

γj

M

∑
m=1
∇ f (xj−τj,m)

∥∥∥∥∥∥
2

≤ 2L2


∥∥∥∥∥∥

k−1

∑
j=k−τk,µ

γj

M

∑
m=1

(
G(xj−τj,m ; ξ j,m)−∇ f (xj−τj,m)

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
T3

+

∥∥∥∥∥∥
k−1

∑
j=k−τk,µ

γj

M

∑
m=1
∇ f (xj−τj,m)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T4


Take expectation for T3 with respect to ξ̂ := {ξ j,M for j ∈ {k− τk,µ, . . . , K− 1}}. We also
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introduce the function S(j) to ease notation.

Eξ̂ [T3] = Eξ̂


∥∥∥∥∥∥∥∥∥∥

k−1

∑
j=k−τk,µ

γj

M

∑
m=1

(
G(xj−τj,m ; ξ j,m)−∇ f (xj−τj,m)

)
︸ ︷︷ ︸

S(j)

∥∥∥∥∥∥∥∥∥∥

2
= Eξ̂

 k−1

∑
j=k−τk,µ

‖S(j)‖2

+ 2Eξ̂

 ∑
k−1≥j′′>j′≥k−τk,µ

〈
S(j′′), S(j′)

〉︸ ︷︷ ︸
=0


= Eξ̂

 k−1

∑
j=k−τk,µ

γ2
j

∥∥∥∥∥ M

∑
m=1

(
G(xj−τj,m ; ξ j,m)−∇ f (xj−τj,m)

)∥∥∥∥∥


= Eξ̂

 k−1

∑
j=k−τk,µ

γ2
j

M

∑
m=1

∥∥∥G(xj−τj,m ; ξ j,m)−∇ f (xj−τj,m)
∥∥∥2

︸ ︷︷ ︸
≤σ2


≤ M

k−1

∑
j=k−τk,µ

γ2
j σ2 ≤ M

k−1

∑
j=k−T

γ2
j σ2

Also, take expectation for T4 with respect to ξ̂.

Eξ̂ [T4] = Eξ̂


∥∥∥∥∥∥

k−1

∑
j=k−τk,µ

γj

M

∑
m=1
∇ f (xj−τj,m)

∥∥∥∥∥∥
2
 ≤ T

k−1

∑
j=k−τk,µ

γ2
j Eξ̂

∥∥∥∥∥ M

∑
m=1
∇ f (xj−τj,m)

∥∥∥∥∥
2


Taking the full expectation for T1 by using Eξ̂ [T3] and Eξ̂ [T4] gives us a useful term for
the following step.

E[T1] ≤ 2L2

M
k−1

∑
j=k−T

γ2
j σ2 + T

k−1

∑
j=k−τk,µ

γ2
j E

∥∥∥∥∥ M

∑
m=1
∇ f (xj−τj,m)

∥∥∥∥∥
2


For the second last step, we derive an upper bound for the difference between f (xk)

and the total expected value of f (xk+1). Then, we use this upper bound for deriving
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the upperbound for E[ f (xK+1)]− f (x1).

E[ f (xk+1)]− f (xk) ≤ −
Mγk

2

E[‖∇ f (xk)‖2]) +
1

M2 E

∥∥∥∥∥ M

∑
m=1
∇ f (xk−τk ,m)

∥∥∥∥∥
2


− L2Mγk

M
k−1

∑
j=k−T

γ2
j σ2 + T

k−1

∑
j=k−τk,µ

γ2
j E

∥∥∥∥∥ M

∑
m=1
∇ f (xj−τj,m)

∥∥∥∥∥
2


+
γ2

k L
2

Mσ2 + E

∥∥∥∥∥ M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2


Use the upper bounds for E[T1] and E[T2] for the second and third sum respectively.

E[ f (xk+1)]− f (xk) ≤ −
Mγk

2
E[‖∇ f (xk)‖2] +

(
γ2

k L
2
− γk

2M

)
E

∥∥∥∥∥ M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2


+

(
γ2

k ML
2

+ L2M2γk

k−1

∑
j=k−T

γ2
j

)
σ2

+ L2MTγk

k−1

∑
j=k−T

γ2
j E

∥∥∥∥∥ M

∑
m=1
∇ f (xj−τj,m)

∥∥∥∥∥
2

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Next,

E[ f (xK+1)]− f (x1) = E[( f (x2)− f (x1)) + ( f (x3)− f (x2)) + · · ·+ ( f (xK − f (xK+1))]

≤ −M
2

K

∑
k=1

γkE[‖∇ f (xk)‖2]

+
K

∑
k=1

(
γ2

k L
2
− γk

2M

)
E

∥∥∥∥∥ M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2


+
K

∑
k=1

(
γ2

k ML
2

+ L2M2γk

k−1

∑
j=k−T

γ2
j

)
σ2

+ L2MT
K

∑
k=1

γk

k−1

∑
j=K−T

γ2
j E

∥∥∥∥∥ M

∑
m=1
∇ f (xj−τj,m)

∥∥∥∥∥
2


= −M
2

K

∑
k=1

γkE[‖∇ f (xk)‖2] +
K

∑
k=1

(
γ2ML

2
+ L2M2γk

k−1

∑
j=k−T

γ2
j

)
σ2

+
K

∑
k=1

(
γ2

k

(
L
2
+ L2MT

T

∑
κ=1

γk+κ

)
− γk

2M

)
E

∥∥∥∥∥ M

∑
m=1
∇ f (xk−τk,m)

∥∥∥∥∥
2


The last term is negative because

LMγk + 2L2M2Tγk

T

∑
κ=1

γk+κ ≤ 1⇔ 2M

(
Lγ2

k
2

+ L2MTγ2
k

T

∑
κ=1

γk+κ

)
≤ γk

⇔ γ2
k

(
L
2
+ L2MT

T

∑
k=1

γk+κ

)
≤ γk

2M

Finally, rearranging this term concludes the proof.

E[ f (xK+1)]− f (x1)

≤ −M
2

K

∑
k=1

γkE[‖∇ f (xk)‖2] +
K

∑
k=1

(
γ2

k ML
2

+ L2M2γk

k−1

∑
j=k−T

γ2
j

)
σ2

⇔ 1

∑K
k=1 γk

K

∑
k=1

γkE[‖∇ f (xk)‖2]

≤
2( f (x1)−E f (xK+1)) + ∑K

k=1

(
γ2

k ML + 2L2M2γk ∑k−1
j=k−T γ2

k

)
σ2

M ∑K
k=1 γk
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2.3 Asynchronous Block Coordinate Descent

A related algorithm to gradient descent is Block Coordinate Descent (BCD). Basically,
each iteration updates only a subset of components of the optimizer x ∈ RN instead of
all. Convergence of (synchronous) BCD has been established in [Tse01] and [Liu+14] in-
troduced an asynchronous version of it. Here, we present the analysis and convergence
proof given in [SHY17] which could give us an important tool for the convergence
theory in Section 2.4.3.

To start with, consider this very general problem, where f is possibly nonconvex but
differentiable and its gradients are L-Lipschitz continuous.

Problem 2.3.1.

min
x∈RN

f (x) = f (x1, . . . , xN)

To solve Problem 2.3.1, for each iteration k the algorithm picks a subset Ik ⊆ {1, . . . , N}
and performs an update for each ik ∈ Ik.

Algorithm 5: Asynchronous Block Coordinate Descent

1 for k = 0, 1, . . . do
2 Pick Ik ⊆ {1, . . . , N}
3 for ik ∈ Ik do
4 Update xk+1

ik
= xk

ik
− γk

L ∇ik f (x̂k)

5 end
6 for ik 6∈ Ik do
7 xk+1

ik
= xk

ik

8 end
9 end

where γk is the current learning rate and x̂k is a possibly delayed optimizer. Formally,
x̂k is defined as

x̂k =
(

xk−j(k,1)
1 , . . . , xk−j(k,N)

N

)
and j(k, n) denotes a bounded delay for a given iteration and dimension. we have
seen a very similar algorithm in the previous Section 2.2 that also uses delays as a
framework. Also, we denote the maximum delay across all dimensions for an iteration
k as

j(k) := max
1≤i≤N

{j(k, i)}
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Before we start with the main theorem and its proof, we also introduce ∆k that notates
the difference between before and after of an Async-BCD iteration.

∆k := xk+1 − xk = −γk

L
∇ik f (x̂k)

Next, we introduce the concept of a Lyapunov function. The main idea of the proof is
then to show a decrease within the Lyapunov function as long as one picks a sufficient
learning rate. Then, we show that this implies convergence.

ξk := f (xk) +
L
2ε

k−1

∑
i=k−τ

(i− (k− τ) + 1)‖∆i‖2
2

Last but not least, we need to ensure that each block is updated frequently enough.
To do that, we assume the following “essentially cyclic” update rule: There exists an
N′ ≥ N such that each block i ∈ {1, . . . , N} is updated at least once within N′ iterations,
i.e. for each t ∈ N≥0 there exists an integer K(i, t) ∈ {tN′, tN′ + 1, . . . , (1 + t)N′ − 1}
such that iK(i,t) = i. Notice that this update rule generalizes many existing pick-
strategies, like block picks in a sequential or random order.

Let’s start the analysis by proving a decrease within the Lyapunov function when one
picks the right learning rate γ.

Lemma 2.3.1. Let f be a possibly nonconvex function with L-Lipschitz continuous gradients
and be lower bounded. Then, if the step size is

γk ≡ γ :=
2c

2τ + 1

for arbitrarty fixed 0 < c < 1 and the sequence (xk)k≥0 is generated by the async-BCD
Algorithm 5 with bounded delay τ, we derive that

ξk − ξk+1 ≥
1
2

(
1
γ
− 1

2
− τ

)
L‖∆k‖2

2

which implies,

lim
k
‖∆k‖2 = 0

Proof. If we insert γ into the term 1
γ −

1
2 − τ then we see that the term is strictly positive.

That means, that that for each iteration k, we see a decrease in the Lyapunov function,
i.e. ξk+1 < ξk.

1
γ
− 1

2
− τ =

2τ + 1
2c

− 1c
2c
− 2τc

2c
=

1
2
(2τ(1− c) + (1− c)) > 0
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Also, in each iteration we only update one coordinate, therefore we have

∆k := xk+1 − xk =
(

0 · · · ∆k
ik
· · · 0

)T
Thus, we derive the next equality by using the update rule in Algorithm 5 line 4 in
addition.

−〈∆k,∇ f (x̂k)〉 = −〈∆k
ik

,∇ik f (x̂k) = −〈∆k
ik

,− L
γk

∆k
ik
〉 = L

γ
‖∆k

ik
‖2

Because ∇ f is L-Lipschitz continuous, we get the next inequalities.

f (xk+1)− f (xk) ≤ 〈∇ f (xk), ∆k〉+ L
2
‖∆k‖2

= 〈∇ f (xk), ∆k〉+ L
2
‖∆k‖2 − 〈∆k,∇ f (x̂k)〉 − L

γ
‖∆k‖2

= 〈∇ f (xk)−∇ f (x̂k), ∆k〉+
(

L
2
− L

γ

)
‖∆k‖2

CS
≤ ‖∇ f (xk)−∇ f (x̂k)‖‖∆k‖+

(
L
2
− L

γ

)
‖∆k‖2

≤ L‖xk − x̂k‖‖∆k‖+
(

L
2
− L

γ

)
‖∆k‖2

TS
≤ L

k−1

∑
i=k−τ

‖∆i‖‖∆k‖+
(

L
2
− L

γ

)
‖∆k‖2

PP
≤ L

k−1

∑
i=k−τ

(
1
2ε
‖∆i‖2 +

ε

2
‖∆k‖2

)
+

(
L
2
− L

γ

)
‖∆k‖2

=
L
2ε

k−1

∑
i=k−τ

‖∆i‖2 + τ
ε

2
‖∆k‖2 +

(
L
2
− L

γ

)
‖∆k‖2

=
L
2ε

k−1

∑
i=k−τ

‖∆i‖2 +

(
(τε + 1)L

2
− L

γ

)
‖∆k‖2

In (CS) we used the well known Cauchy-Schwarz-inequality and in (PP) the “Peter-Paul”
fact, namely

〈x, y〉 ≤ 1
2ε
‖x‖2 +

ε

2
‖y‖2
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which can be seen by rearranging 0 ≤ ‖x′ − y′‖2 and setting x := x′√
ε

and y :=
√

εy.
Last but not least, in (TS) we used the telescopic sum

‖xk − x̂k‖ = ‖xk − xk−1 + xk+1 − xk−1 + · · ·+ xk−τ+1 − xk−τ‖

≤
k−1

∑
i=k−τ

‖xi+1 − xi‖ =
k−1

∑
i=k−τ

‖∆i‖

We are now in a position where we can upper bound the difference within the Lyapunov-
functions between two iterations k and k + 1.

ξk − ξk+1 = f (xk)− f (xk+1) +
L
2ε

k−1

∑
i=k−τ

(i− (k− τ) + 1)‖∆i‖2

− L
2ε

k−1

∑
i=k+1−τ

(i− (k− τ))‖∆i‖2 − L
2ε

τ‖∆k‖2

= f (xk)− f (xk+1) +
L
2ε

k−1

∑
k−τ

‖∆i‖2 − L
2ε

τ‖∆k‖2

≥ − L
2ε

k−1

∑
i=k−τ

‖∆i‖2 −
(
(τε + 1)L

2
− L

γ

)
‖∆k‖2

+
L
2ε

k−1

∑
i=k−τ

‖∆i‖2 − L
2ε

τ‖∆k‖2

=
L
γ
‖∆k‖2 − (τε + 1)L

2
‖∆k‖2 − L

2ε
τ‖∆k‖2

= L‖∆k‖2
(

1
γ
− τε + 1

2
− τ

2ε

)

For the last step, we choose an ε > 0 such that

ε +
1
ε
= 1 +

1
τ

(
1
γ
=

1
2

)

e.g. by solving a quadratic system. Rearranging the last inequality and replacing ε

with our maximum delay τ and learning rate γ gives 1
2

(
1
γ −

1
2 − τ

)
L‖∆k‖2. Because

the factor infront of ‖∆k‖2 is constant and greater than 0 it follows that ‖∆k‖2 must
decrease and approach 0.
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By applying Lemma 2.3.1, we now show that the gradient of f (xk) approaches 0 when
k→ ∞.

Theorem 2.3.1. Assume the conditions in Lemma 2.3.1 for the function f . Then, for the
essentially cyclic update block rule, we have

lim
k
‖∇ f (xk)‖2 = 0

Proof.

‖∇i f (xk)‖ = ‖∇i f (xk) +∇i f (x̂K(i,t))−∇i f (x̂K(i,t)) +∇i f (x̂k)−∇i f (x̂k)‖
≤ ‖∇i f (x̂K(i,t))‖+ ‖∇i f (xk)−∇i f (x̂k)‖+ ‖∇i f (x̂k)−∇i f (x̂K(i,t))‖

≤ ‖∇i f (x̂K(i,t))‖+ L‖xk − x̂k‖+ L
k−1

∑
j=K(i,t)

‖x̂j+1 − x̂j‖

To conclude the proof, we need to upper bound each summand. We start with ‖xk− x̂k‖,
apply (TS) again and take its limit with respect to k.

‖xk − x̂k‖ ≤
k−1

∑
i=k−τ

‖∆i‖

lim
k→∞
‖xk − x̂k‖ ≤ lim

k→∞

k−1

∑
i=k−τ

‖∆i‖

Using Lemma 2.3.1 implies that limk→∞ ‖xk − x̂k‖ = 0. Next, ‖x̂j+1 − x̂j‖ can be upper
bounded by the triangle inequality:

‖x̂j+1 − x̂j‖ = ‖ − (xk+1 − x̂k+1) + xk+1 − xk + xk − x̂k‖
≤ ‖ − (xk+1 − x̂k+1)‖+ ‖xk+1 − xk‖+ ‖xk − x̂k‖

Due to the previous results, each term converge to 0 when we take their limit. For the
last term ‖∇i f (x̂K(i,t))‖ we recall the “Essentially cyclic update rule” and notice that
when k→ ∞ then also K(i, t)→ ∞. Since i = K(i, t),

‖∇i f (x̂K(i,t))‖ = ‖∇K(i,t) f (x̂K(i,t))‖ = ‖ − L
γ

∆K(i,t)‖ = L
γ
‖∆K(i, t)‖

Taking the limit and applying Lemma 2.3.1 concludes the proof.
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Because we use delays in our algorithm, we cannot prove that every iteration of async-
BCD provides a decrease within the objective function f (x). This is highly dependent
on how we pick the blocks and delays. But, due to the “essentially cyclic” update
assumption and the bounded delays, it is at least possible to show that we approach
the optimality condition of f .

2.4 Flexible ADMM

In contrast to the previously described algorithms that mainly aggregate gradients,
we categorize ADMM under the “model aggregation” type algorithms. Instead of
distributing the task of calculating gradients and collecting them, each worker solves a
specific subproblem on its own and a master aggregates all solutions of the workers.
Then, it defines new subproblems and distributes them to the workers again.

2.4.1 Convergence Analysis

The synchronous ADMM Algorithm 2 requires us to synchronize all workers with
the master. To solve this limitation, Hong’s Flexible ADMM [HLR16b] removes this
constraint. Here, the asynchronicity only refers to “update set”, see Section 1.2.3: Each
iteration, the master does not necessarily need the results of all workers but only of a
“flexible” subset of it. [HLR16b] was able to show convergence for nonconvex functions
under certain assumptions and the analysis might be able to be extended to support
delays in the optimization updates. We give some insights on this extension in Section
2.4.3. For now, we will look more closely into Hong’s convergence theory as it provides
us yet another proofing technique on how to deal with asynchronous updates.

Consider the regularized consensus problem

Problem 2.4.1.

min
K

∑
k=1

gk(xk) + h(x0)

s.t. xk = x0 ∀k = 1, . . . , K; x0 ∈ X

where gk is differentiable but not necessarily convex for all k, h is convex but not necessarily
differentiable and X is closed.

And, its augmented Lagrangian L({xk}, x0; y) with parameter ρk affecting the strong-
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convexity of the objective functions:

L({xk}, x0; y) :=
K

∑
k=1

gk(xk) + h(x0) +
K

∑
k=1
〈yk, xk − x0〉+

K

∑
k=1

ρk

2
‖xk − x0‖2

We will show that “Flexible ADMM” can be used for Problem 2.4.1.

Algorithm 6: Flexible ADMM

1 Initialize x0
0, {xt

k}K
k=1 and {yt

k}K
k=1

2 Choose appropriate {ρk}K
k=1

3 for t = 0, 1, . . . do
4 if t = 0 then
5 C t+1 = {0, . . . , K}
6 else
7 C t+1 ⊆ {0, . . . , K}
8 end
9 if 0 ∈ C t+1 then

10 xt+1
0 = arg minx∈X L({xt

k}, x0; yt)

11 else
12 xt+1

0 = xt
0

13 end
14 if k 6= 0 and k ∈ C t+1 then
15 Distribute to worker k
16 xt+1

k = arg minxk
gk(xk) + 〈yt

k, xk − xt+1
0 〉+ ∑K

k=1
ρk
2 ‖xk − xt+1

0 ‖2

17 yt+1
k = yt

k + ρk

(
xt+1

k − xt+1
0

)
18 else
19 xt+1

k = xt
k

20 yt+1
k = yt

k
21 end
22 end

Notice the update sets C in the algorithm which affects the type and order of updates.
Also, [HLR16b] provided several assumptions to ensure convergence.

Assumption 2.4.1.

• (Lipschitz Continuous Gradients): For all k, the gradients ∇gk(·) are Lk-Lipschitz
continuous, i.e. for all xk, x′k

‖∇kgk(xk)−∇gk(x′k)‖ ≤ Lk‖xk − x′k‖
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• (Large Enough Penalty Paramter): The parameter ρk is chosen large enough such
that for all k, the subproblem in line 16 is strongly convex with modulus γk(ρk) and
ρkγk(ρk) > 2L2

k and ρk ≤ Lk.

• (Bounded from below): f (x) is lower bounded over X, i.e.

f := min
x∈X

f (x) > −∞

The most important assumption here is to choose a large enough penalty parameter
ρk. It allows us to “strongly convexify” the subproblems of the workers. However, this
comes with a cost of slower convergence. Again, one must choose a balance between a
well-behaved convex problem and fast learning. In practice, it is not always clear how
to estimate the right parameter for a given function, so some experimentation might be
required.

Similar to asynchronous block coordinate descent, we need to ensure that all local
variables contribute to the master at some point. We do that by assuming essentially
cyclic updates. Namely,

T⋃
i=1

C t+i = {0, . . . , K} ∀t

Now, we are going to prove three important lemmas that build the foundation for the
main Theorem 2.4.1. The first Lemma 2.4.1 upper bounds the difference between the
dual variables when we apply Flexible ADMM.

Lemma 2.4.1. Suppose Assumption 2.4.1 holds. Then, for Algorithm 6 with the essentially
cyclic update rule, we have

L2
k‖xt+1

k − xt
k‖2 ≥ ‖yt+1

k − yt
k‖2 ∀k = 1, . . . , K

Proof. We write down the optimality condition for the update xt+1
k and combine it with

the dual update step ρk(xt+1
k − xt+1

0 ) = yt+1
k − yk:

0 = ∇gk(xt+1
k ) + yt

k + ρk(xt+1
k − xt+1

0 )

⇔ ∇gk(xt+1
k ) = −yt+1

k

Now, we combine it with the first Assumption 2.4.1 which concludes the proof.

‖yt+1
k − yt

k‖ = ‖∇gk(xt
k)−∇gk(xt+1

k )‖ = ‖∇gk(xt+1
k )−∇gk(xt

k)‖ ≤ Lk‖xt+1
k − xt

k‖

33



2 Theory of Asynchronous Algorithms

The next lemma shows a decrease in the augmented Lagrangian after each iteration t
as long as we pick sufficiently large ρks.

Lemma 2.4.2. For Algorithm 6 with the essentially cyclic update rule, we have

L({xt+1
k , xt+1

0 ; yt+1})− L({xt
k, xt

0; yt})

≤ ∑
k∈C t+1\{0}

(
L2

k
ρk
− γk(ρk)

2

)∥∥∥xt+1
k − xt

k

∥∥∥2
− γ

2

∥∥∥xt+1
0 − xt

0

∥∥∥2

Proof. We start by splitting the difference into three summands, each representing an
update within one iteration. Then we upper bound each term.

L({xt+1
k , xt+1

0 ; yt+1})− L({xt
k, xt

0; yt}) = L({xt+1
k , xt+1

0 ; yt+1})− L({xt+1
k , xt+1

0 ; yt})
+ L({xt+1

k , xt+1
0 ; yt})− L({xt

k, xt+1
0 ; yt})

+ L({xt
k, xt+1

0 ; yt})− L({xt
k, xt

0; yt})

We upper bound the first term by inserting the dual variable update rule.

L({xt+1
k , xt+1

0 ; yt+1})− L({xt+1
k , xt+1

0 ; yt})

=
K

∑
k=1

〈
yt+1

k , xt+1
k − xt+1

0

〉
−

K

∑
k=1

〈
yt

k, xt+1
k − xt+1

0

〉
=

K

∑
k=1

〈
yt+1

k − yt
k, xt+1

k − xt+1
0

〉
=

K

∑
k=1

〈
yt+1

k − yt
k,

1
ρk

(
yt+1

k − yt
k

)〉
=

K

∑
k=1

1
ρk

∥∥∥yt+1
k − yt

k

∥∥∥2

For the second term, we introduce an auxiliary function lk that is strongly convex with
respect to xk as long as ρk has been chosen large enough.

lk(xk, x0; y) := gk(xk) + 〈yk, xk − x0〉+
ρk

2
‖xk − x0‖2

Due to the strong convexity with modulus γk(ρk) we get the next inequality.

lk(xt+1
k , x0; y)− lk(xt

k, x0; y) ≤
〈
∇lk(xt+1

k , x0; y), xt+1
k − xt

k

〉
− γk(ρk)

2

∥∥∥xt+1
k − xt

k

∥∥∥2
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We insert lk into the second term that we want to upper bound. Then we recall that we
solve the lk subproblem exactly which implies that ∇lk is zero.

L({xt+1
k , xt+1

0 ; yt})− L({xt
k, xt+1

0 ; yt})

=
K

∑
k=1

(
lk(xt+1

k )− lk(xt
k)
)

≤
K

∑
k=1

〈∇lk(xt+1
k , xt+1

0 ; yt)︸ ︷︷ ︸
=0

, xt+1
k − xt

k

〉
− γk(ρk)

2

∥∥∥xt+1
k − xt

k

∥∥∥2


For the last difference, we see that by the assumptions 2.4.1, L({xk}, x0; y) is strongly
convex with respect to x0 with modulus γ. Because we solve the x0 subproblem exactly,
we let 0 = ζt+1

x0
∈ ∂L({xt

k}, xt+1
0 ; yt). Then, we bound the term.

L({xt
k}, xt+1

0 ; yt)− L({xt
k}, xt

0; yt) ≤ 〈ζt+1
x0︸︷︷︸
=0

, xt+1
0 − xt

0〉 −
γ

2
‖xt+1

0 − xt
0‖2

Finally, we combine each term

L({xt+1
k }, xt+1

0 ; yt+1)− L({xt
k}, xt

0; yt)

≤ −
K

∑
k=1
−γk(ρk)

2
‖xt+1

k − xt
k‖2 +

1
ρk
‖yt+1

k − yt
k‖ −

γ

2
‖xt+1

0 − xt
0‖2

≤
K

∑
k=1

(
L2

k
ρk
− γk(ρk)

2

)
‖xt+1

k − xt
k‖2 − γ

2
‖xt+1

0 − xt
0‖2

One can confirm that both summands are strictly negative. This implies that after each
iteration, the augmented Lagrangian L decreases.

The last lemma lower bounds the augmented Lagrangian.

Lemma 2.4.3. Suppose Assumption 2.4.1 holds. Let {{xt
k}, xt

0, yt} be generated by Algorithm
6 with the essentially cyclic update rule. Then, the following limit exists and is lower bounded
by f as defined in Assumption 2.4.1.

lim
t→∞

L({xt
k, xt

0; yt}) ≥ f
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Proof.

L({xt+1
k }, xt+1

0 ; yt+1)

= h(xt+1
0 ) +

K

∑
k=1

(
gk(xt+1

k ) + 〈yt+1
k , xt+1

k − xt+1
0 〉+

ρk

2
‖xt+1

k − xt+1
0 ‖

2
)

1
= h(xt+1

0 ) +
K

∑
k=1

(
gk(xt+1

k ) + 〈∇gk(xt+1
k ), xt+1

0 − xt+1
k 〉+

ρk

2
‖xt+1

k − xt+1
0 ‖

2
)

≥ h(xt+1
0 ) +

K

∑
k=1

(
gk(xt+1

k ) + 〈∇gk(xt+1
k ), xt+1

0 − xt+1
k 〉+

Lk

2
‖xt+1

k − xt+1
0 ‖

2
)

≥ h(xt+1
0 ) +

K

∑
k=1

gk(xt+1
0 )

= f (xt+1
0 ) ≥ f

In (1) we used Lemma 2.4.1, namely 〈yt+1
k , xt+1

k − xt+1
0 〉 = ∇gk(xt+1

0 − xt+1
k ).

Finally, we state the convergence theorem.

Theorem 2.4.1. Assume Assupmtion 2.4.1. Then,

lim
t→∞
‖xt+1

k − xt+1
0 ‖ = 0

Proof. Due to Lemma 2.4.2, we have

L({xt+1
k }, xt+1

0 ; yt+1)− L({xt
k}, xt

0; yt) ≤
K

∑
k=1

(
L2

k
ρk
− γk(ρk)

2

)
‖xt+1

k − xt
k‖2 − γ

2
‖xt+1

0 − x0‖2

By Lemma 2.4.3, the limits of ‖xt+1
k − xt

k‖ and ‖xt+1
0 − xt

0‖ must converge go to 0 since
the factors in front of them are independent of t. And to conclude the proof, we apply
Lemma 2.4.1 and use the dual variable update rule.

L2
k ‖xt+1

k − xt
k‖︸ ︷︷ ︸

→0

≥ ‖yt+1
k − yt

k‖︸ ︷︷ ︸
⇒→0

= ‖ρk(xt+1
k − xt+1

0 )‖︸ ︷︷ ︸
⇒→0

Once Theorem 2.4.1 is established, the full convergence proof can be derived. For this,
we refer to the original paper [HLR16b] since the rest of the proof does not provide any
further insights on how to deal with asynchronicity.
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2.4.2 Order of Updates

It turns out that the Flexible ADMM Algorithm 6 still converges if we perform its
update steps in an arbitrary order, as long as every update happens at some point in
time. Recall the essentially cyclic update rule:

T⋃
i=1

C t+i = {0, . . . , K} ∀t

The condition only requires from us that a given update k ∈ {0, . . . , K} happens within
an interval T. For example, instead of performing a global aggregation step for node 0
first, it would also be fine to do it in the middle or at the very end of an interval. We
only require that the local primal and dual updates always happen together.

2.4.3 Delayed ADMM

Given the previously mentioned algorithms “Asynchronous SGD” and “Asynchronous
BCD”, it is very natural to question whether we can derive a similar analysis for ADMM
as well. Consider the following modification to Flexible ADMM.

Algorithm 7: Delayed ADMM

1 Initialize x0
0, {xt

k}K
k=1 and {yt

k}K
k=1

2 Choose appropiate {ρk}K
k=1

3 for t = 0, 1, . . . do
4 xt+1

0 = arg minx0∈X L({x̂t
k}, x0; ŷt)

5 for k = 1, . . . , K do
6 Distribute to worker k
7 xt+1

k = arg minxk
gk(xk) + 〈yt

k, xk − x̂t+1
0 〉+ ∑K

k=1
ρk
2 ‖xk − x̂t+1

0 ‖2

8 yt+1
k = yt

k + ρk

(
xt+1

k − x̂t+1
0

)
9 end

10 end

where x̂t is a delayed variable, not older than τ.

x̂t ∈ {xt−τ, . . . , xt}

This algorithm describes the “most general” asynchronous case and generalizes Flexible
ADMM. However, at this point in time we could not derive a full theoretical analysis for
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this case yet. The original idea was to concatenate the global and local primal variable
and to connect the analysis given in the asynchronous BCD method with the one
provided in Flexible ADMM. One might also look into [Hon18] as it shows an analysis
for delays but with inexact update rules. Nevertheless, we provide experimental
results in Section 3.2 for this algorithm. We believe that is it is worth it to analyze the
modification further.

38



3 Examples and Experiments

T
o support the provided theory, we perform several experiments on asyn-
chronous SGD and asynchronous ADMM. We vary their hyperparameters
affecting their convergence rate and we also look at the effects of delayed

information. In specific, we derive a distributed version of an image classification prob-
lem and an image segmentation task and we also give details on how we implemented
a distributed optimizer using a GPU cluster.

3.1 SGD Experiments

The main goal of this first experiment is to implement the asynchronous distributed
SGD algorithm and to simulate different delays and their effect on the convergence
rate by using different learning rates. We implement the algorithm that we describe in
detail in 2.2 or from [Lia+15].

We consider the MNIST logistic regression problem:

Problem 3.1.1 (MNIST Logistic Regression).

min
x∈Rn

Eξ [F(x; ξ)] = min
x∈Rn

1
m

m

∑
i=1

l(h(imagei; x), labeli)

where l is the cross-entropy loss function and h is a logistic regression score function param-
eterized by x. ξ is sampled from a distribution consisting of the 60000 data pairs available in
MNIST.

We could choose a different model for h like a neural network. However, we decided to
keep the experiment sufficiently simple. To model delays, we store the new variable
in a queue for every iteration. In all experiments, we set the batch size to 64. Each
batch uses the same, constant delay. That way, we can simulate a worst-case scenario
where we simulate a huge failure in receiving the data. In addition, it also makes
interpreting the graphs easier since there is not any noise in the sampling itself. Each
graph shows the cross-entropy loss given by the different learning rates γ for a fixed
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constant delay τ. Due to the discussed theory, we expect that decreasing the learning
rate γ results in an expected decrease in the loss. Figure 3.1 shows various plots with
delays of 1, 10, 100, 1000 and 10000.
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Figure 3.1: Cross-entropy loss and accuracy with different delays and learning rates

In all experiments, a delay of 1 means no delay at all, because it describes the size of
the queue. On the left-hand side, we plot the cross-entropy loss and on the right-hand
side, we plot the accuracy measured on a validation set with each iteration. The main
observation we make coincides with the provided theory: The higher we set the delays,
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the lower we need to set the learning rate. At the same time, we do not want to set the
learning rate too low as it slows down learning. Consider the graph with a delay of
10 (second row). Clearly, the learning rate of 0.1 is too high because the loss function
is diverging. However, a learning rate of 0.0001 is also not optimal because it cannot
minimize the loss as fast as 0.001.

In the last row, we jeopardize the delay completely by setting a meaningless high delay.
In fact, in most iterations, we always refer to the initial random guess. Clearly, this
prevents any learning.

3.2 Asynchronous ADMM Logistic Regression

So far, we have seen the theoretic analysis of Flexible ADMM (Section 2.4) and an
extension to it which could deal with delays in Section 2.4.3. Here, we want to evaluate
this extension and see how delays affect the results but also how running ADMM
asynchronously could speed up the whole computation in some situations. To see this,
we are going to solve two problems, namely a logistic regression image classification
task using the MNIST dataset again and an image segmentation problem using convex
optimization methods.

Each problem will be solved using an implementation with simulated delays and with
real delays. By simulated delays, we mean that we do not run multiple workers but
our iteration will use delayed information, similar to the SGD experiments in Section
3.1. In contrast to that, we also perform experiments that use real delays, i.e. we start
multiple workers on a real GPU cluster and let them communicate synchronously and
asynchronously and we measure their performance. To let workers communicate over a
network, we use the PyTorch distributed Package1 to which we will also give a short
tutorial on how to use the package in Section 3.4.

3.2.1 Derivation

Recall the MNIST Logistic Regression Problem 3.1.1.

min
x∈Rn

f (x) = Eξ [F(x; ξ)]

We notice that f is separable and we can split it by distributing the MNIST dataset
onto K workers. Then, each worker optimizes only over a fixed subset. By doing so we

1see official PyTorch documentation here: https://pytorch.org/docs/stable/distributed.html
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end up with the consensus Problem 2.1.3. Now, Each new function Gi(x) consists of a
subset of the original MNIST data.

min
x∈Rn

f (x)⇔ min
x0,{xk}∈Rn

max
{yk}∈Rn

Lρ(x0, {xk}; {yk})

min
x0,{xk}∈Rn

max
{yk}∈Rn

K

∑
k=1

Gk(xk) +
K

∑
k=1
〈yk, x0 − xk〉+

K

∑
k=1

ρk

2
‖x0 − xk‖2

In practice, it depends on the problem and the available resources on how one would
split the data in a meaningful way. If the data set is small, every worker could have
access to the full data set. If some workers have better hardware than others, they could
receive a larger subset than the ones with average hardware. And, if the data set is very
large, it makes sense that each worker only has access to a subset of it.

Because we only need to achieve consensus and no other optimization over x0, it can
be interpreted as an averaging over all model variables xk. To see this, we state the
optimality condition and solve for x∗0 .

x∗0 = arg min
x0∈Rn

L{ρk}(x0, {xt
k}; {yt

k})

arg min
x0∈Rn

K

∑
k=1

Gk(xk) +
K

∑
k=1
〈yk, x0〉+

K

∑
k=1

ρk

2
‖x0 − xk‖2

0 =
K

∑
k=1

yk +
K

∑
k=1

ρk(x∗0 − xk)

x∗0 =
∑K

k=1 ρkxk −∑K
k=1 yk

∑K
k=1 ρk

As for the local subproblems, we approximate a solution by applying gradient descent
with a learning rate γk for it. This implies, that we do not solve the problem exactly.
To mitigate this issue, we could run multiple gradient descent epochs E to better
approximate the true minimum. This comes with the cost of additional calculation time.
In practice, it turned out that one epoch E = 1 of gradient descent is a good tradeoff
between the approximation and calculation time in this experiment.
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This results in the final Algorithm 8.

Algorithm 8: Delayed ADMM for logistic regression with Lagrangian multipliers

1 Initialize x0
0, {x0

k}K
k=1 and {y0

k}K
k=1

2 Choose appropiate {ρk}K
k=1

3 for t = 0, 1, . . . do

4 xt+1
0 = ∑K

k=1 ρk x̂k−∑K
k=1 ŷk

∑K
k=1 ρk

5 for k = 1, . . . , K do
6 Distribute to worker k
7 xt+1

k = xt
k

8 for e = 1, . . . , E do
9 xt+1

k = xt+1
k − γk

(
∇gk(xt+1

k ) + yt
k + ρk(xt+1

k − x̂t+1
0 )

)
10 end

11 yt+1
k = yt

k + ρk

(
xt+1

k − x̂t+1
0

)
12 end
13 end

If the data comes from the same distribution, we can neglect the dual variables yk
because the primal variables xk will achieve consensus naturally. The authors in
[LWC19] give further insights into it. Removing the dual variables simplifies our global
and local update rules. The augmented Lagrangian is now:

L{ρk}(x0, {xk}) :=
K

∑
k=1

gk(xk) +
K

∑
k=1

ρk

2
‖x0 − xk‖2

Solving the optimality condition and rearranging for xt+1
0 gives an averaging over all

worker variables again. And, for the optimization over the local worker updates, we
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use SGD as well, resulting in Algorithm 9.

Algorithm 9: Delayed ADMM for logistic regression without Lagrangian multi-
pliers

1 Initialize x0
0, {x0

k}K
k=1 and {y0

k}K
k=1

2 Choose appropiate {ρk}K
k=1

3 for t = 0, 1, . . . do

4 xt+1
0 = ∑K

k=1 ρkxk

∑K
k=1 ρk

5 for k = 1, . . . , K do
6 Distribute to worker k
7 xt+1

k = xt
k

8 for e = 1, . . . , E do
9 xt+1

k = xt+1
k − γk

(
∇gk(xt+1

k ) + ρk(xt+1
k − x̂t+1

0 )
)

10 end
11 end
12 end

3.2.2 Simulated Delays

For the following experiments, we simulate asynchronicity by using outdated/delayed
variables for the global “master” update and the local “worker” updates. There are
different possibilities to simulate delays. Here, we first simulate a worst-case scenario
by setting a constant delay of τ for all variables. That means, every update uses the
variables from τ iterations ago. Obviously, this scenario might not be very realistic but it
is not unreasonable to assume that it models the worst-case. To provide a more realistic
modeling, we sample delays from a uniform distribution in a second experiment. We
are especially interested in whether and when our cross-entropy loss function converges
and how these two different delay sampling strategies compare.

We distinguish between these four categories and measure the cross-entropy loss and
accuracy:

• Lagrangian multipliers with data splitting

• Lagrangian multipliers without data splitting

• No Lagrangian multipliers with data splitting

• No Lagrangian multipliers without data splitting
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When we use data splitting, the MNIST dataset is partitioned into nonoverlapping,
equal-sized subsets and each worker gets access to one subset only. In the case without
splitting, each worker has access to the full training data. This also implies that one
epoch of a worker without splitting goes through more data than one worker with
splitting. Each local worker performs one epoch and we stop the experiment after 100
iterations.

For the first experiment, we use a constant delay of τ = 5 and vary the ρk ≡ ρ ∈
{1.0, 5.0, 10.0, 50.0} parameter that affects the strong convexity of every local objective
function. The learning rate γ for the workers is set to 0.001 and we simulate K = 5
worker nodes. We also compare the results with a run without delays (τ = 1) and a
small ρ = 1.0, visualized by a dotted line in Figure 3.2.

In all the graphs we see: The higher the penalty factor ρ, the slower the learning.
However, for some small ρ we do not have convergence in the cross-entropy loss at all.
Also, due to the constant delay, we see “step-functions” in the graph. This happens
because of the lag in the variables. In the beginning, we always refer to the same initial
guess and we cannot progress until the iteration number becomes higher than the
delay.

In specific, if we do have Lagrangian multipliers, then ρ = 1.0 and ρ = 5.0 are set too
low. But, once we set ρ = 10.0, we converge towards the baseline. Interestingly, if
we remove the Lagrangian multipliers from the experiment, it performs much more
well-behaved and even low ρ values make the loss function converge. Additionally, the
accuracy is much closer to the baseline than in the experiments with multipliers. Last
but not least, data splitting did not result in a much different outcome.

Figure 3.3 shows the same experiment but with delays sampled from a uniform
distribution τ ∼ U(1, 5) where 1 represents no delay at all.

Now, because we sample smaller delays much more often compared to the constant
distribution experiment, the graphs do not look like a step function anymore. But, we
still observe the effect of ρ on the convergence and speed.
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Figure 3.2: Constant delay
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Figure 3.3: Uniform delay
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Next, we vary the maximum delay, fix ρ = 10.0 and also use the same local learning
rate γ = 0.001 and same number of simulated nodes K = 5.

Due to the constant delay, in the beginning, we observe a lag in all graphs from Figure
3.4 depending on the delay size. We also see step-functions again where the step size
depends on the current delay τ. In addition, the graphs confirm that a higher delay
slows down learning. This happens because we only approximately progress every τ

iterations.

And, notice that the experiments without Lagrangian multipliers even show conver-
gence with higher delays. When we consider Lagrangian multipliers, the delay must
not exceed τ = 6. However, if we remove the multipliers, even the highest delay of
τ = 10 results in convergence.

Finally, we change the sampling strategy again to a uniform distribution and plot the
results in Figure 3.5.

We observe that all graphs converge regardless of the delay. This seems reasonable
since we sample a delay of τ = 5.5 on average and in the previous experiment this
delay was not too high. Regarding the accuracies, they are closer to each other and
range between 80% to 90%.
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Figure 3.4: Constant delay

49



3 Examples and Experiments

0 20 40 60 80 100

Iteration

100

4 × 10 1

6 × 10 1

2 × 100

Cr
os

s E
nt

ro
py

 L
os

s

Multipliers: Yes, Splitted Data: Yes
 = 1
 = 5
 = 10

0 20 40 60 80 100

Iteration

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 = 1
 = 5
 = 10

0 20 40 60 80 100

Iteration

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Cr
os

s E
nt

ro
py

 L
os

s

Multipliers: Yes, Splitted Data: No
 = 1
 = 5
 = 10

0 20 40 60 80 100

Iteration
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 = 1
 = 5
 = 10

0 20 40 60 80 100

Iteration

100

4 × 10 1

6 × 10 1

2 × 100

Cr
os

s E
nt

ro
py

 L
os

s

Multipliers: No, Splitted Data: Yes
 = 1
 = 5
 = 10

0 20 40 60 80 100

Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 = 1
 = 5
 = 10

0 20 40 60 80 100

Iteration

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Cr
os

s E
nt

ro
py

 L
os

s

Multipliers: No, Splitted Data: No
 = 1
 = 5
 = 10

0 20 40 60 80 100

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 = 1
 = 5
 = 10

Figure 3.5: Uniform delay
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3.2.3 Real Delays

For the next logistic regression experiment, we implement a real distributed ADMM
version using the partial barrier strategy and let it run on a real GPU cluster. The com-
munication between workers and master is implemented via the Pytorch distributed
package (see Section 3.4). Here, we are interested in how two slow workers affect the
performance of three fast ones in a synchronous and an asynchronous setting. Again,
we measure the cross-entropy loss on a validation dataset and its accuracy for the
previously mentioned four different categories.

To implement this experiment successfully, we need to change the algorithm from
the general theoretical perspective to a specific, practical one. We decided to use a
partial barrier due to the simplicity in its implementation. Consider this modification
of Algorithm 8 for the master node:

Algorithm 10: Master algorithm for logistic regression

1 Initialize x0
0, {xk}K

k=1, {yk}K
k=1 and partial barrier B

2 U = ∅
3 for k = 1, . . . , K do
4 Start receiving xk and yk from worker k
5 end
6 for t = 0, 1, . . . do
7 for k 6∈ U do
8 If xk and yk have been received, add k to U
9 end

10 if |U| ≥ B then

11 xt+1
0 = ∑K

k=1 ρkxk−∑K
k=1 yk

∑K
k=1 ρk

12 for k ∈ U do
13 Start sending xt+1

0 to worker k
14 Remove k from U
15 end
16 end
17 end
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And, for the worker nodes:

Algorithm 11: Worker k algorithm for logistic regression

1 Initialize x0
k , y0

k , x0

2 while True do
3 Distribute x0

k (and y0
k)

4 x0 ← Receive x0

5 xt+1
k = xt

k − γk
(
∇gk(xk) + yt

k + ρk(xt
k − x0)

)
6 yt+1

k = yt
k + ρk

(
xt+1

k − xt+1
0

)
7 end

The algorithm without Lagrangian multipliers can be derived accordingly. In addition,
because averaging the models by the master is a very easy task, we do not model delays
in both directions. That means the worker nodes stay idle until they receive a new job
which resulted in idle time between 1s and 3s on our hardware.

In total, we run 5 worker nodes and 1 master node. We set ρ = 10 and the local learning
rate γ = 0.01. We quickly noticed that the calculation time of each worker is roughly
the same and that communication within a GPU cluster is very stable. This resulted in
an (almost) synchronous behavior without even enforcing it. To artificially counteract
this, we purposely slowed down the calculation time by adding 60 seconds to each
iteration of two workers to observe, how this affects the final results. First, we set the
partial barrier B = 5 to enforce synchronicity. Then, we lower it to B = 1 to allow
asynchronicity.

In all of our four experiments in Figure 3.6 we plot the results with respect to the
physical time. It turns out that the asynchronous mode minimizes the cross-entropy
faster than the synchronous mode.
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Figure 3.6: Cross-entropy and accuracies for synchronous and asynchronous implemen-
tation depending on the category
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3.3 Asynchronous ADMM Image Segmentation

For the next task, we are given an image and depending on the colors we cluster the
image in L segments. Figure 3.7 shows an example input and its segmentation where
L = 4.

(a) original input image (b) segmented output image

Figure 3.7: Image segmentation example using 4 segments

The term image segmentation is ambiguous since there exist other segmentation tasks
as well that do not create segments based on the color of the image but based on the
context of the objects within it. Usually, these kinds of methods need to make usage
of heavy deep learning methods and require a lot of data. We refer to [BKC17] as one
famous example. Here, we focus on the segmentation task described at the beginning
which works without training and uses convex optimization methods only.

3.3.1 Derivation of the Master Update

We start by stating the image segmentation Problem 3.3.1.

Problem 3.3.1 (Image Segmentation). Consider the following optimization problem

min
u∈Rn×L

n

∑
j=1

(
δ{uj ∈ ∆L−1}+ 〈uj, f j〉

)
+ α

L

∑
l=1
‖∇ul‖1,δ

where u is our optimization variable, n the number of pixel in the image, δ{·} is the indi-
cator function, ∆L−1 is the probability simplex and ‖ · ‖1,δ : Rn → R is the Huber function
parameterized by δ and defined as

‖u‖1,δ :=
n

∑
i=1
|ui|1,δ =

n

∑
i=1

{
u2

i
2δ if |ui| ≤ δ

|ui| − δ
2 otherwise
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Our goal is to split the objective function such that multiple workers can optimize over
a part of the image independently. One option to achieve this is by splitting the Huber
term. Instead of applying the discrete gradient operator ∇ on the whole image, each
worker could only apply it on a smaller section, for example like Figure 3.8

Figure 3.8: One possible approach to split an image

Notice that there are two splitting lines visualized in Figure 3.8. Because we calculate a
discrete gradient, every pixel needs access to the pixels from their neighborhood above
and to the left. Therefore, the splits must overlap or we would end up with visible lines
between sections.

On the one hand, we introduce k new optimization variables uk. On the other hand,
this splitting shrinks the dimensionality from Rn×L to Rnk×L where nk is the number of
pixel in section k. Due to this shrinkage, we also need to introduce selection matrices
Aks that select the right section of the whole image. For the master node “aggregation”
update, the projection onto the probability simplex ∆L−1 gets applied to the whole
image. Therefore, the variable u0 ∈ Rn×L keeps its dimensions. Let’s formalize these
ideas.

Problem 3.3.2 (Splitted Image Segmentation).

min
u0,{uk}

n

∑
i=1

(
δ{(u0)i ∈ ∆L−1}+ 〈(u0)i, fi〉

)
+

K

∑
k=1

α
L

∑
l=1
‖∇uk

l‖1,δ

such that for all k, Aku0 = uk.
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As before, we introduce dual variables and state the augmented Lagrangian.

L(u0, {uk}; {pk}) :=
n

∑
i=1

(
δ{(u0)i ∈ ∆L−1}+ 〈(u0)i, fi〉

)
+

K

∑
k=1

α
L

∑
l=1
‖∇uk

l‖1,δ

+
K

∑
k=1
〈pk, Aku0 − uk〉F +

K

∑
k=1

ρk

2
‖Aku0 − uk‖2

F

Now, we derive the master u0 update and the worker primal uk and dual pk updates, as
defined by ADMM. For clarity, we do not add delays to the variables in our derivation
yet. However, in the experiments, we do simulate delays again and also present a real
implementation using the partial barrier method.

ut+1
0 ∈ arg min

u0∈Rn×L
L(u0, {ut

k}; {pt
k})

∈ arg min
u0∈Rn×L

n

∑
i=1

(
δ{(u0)i ∈ ∆L−1}+ 〈(u0)i, fi〉

)
+

K

∑
k=1
〈pt

k, Aku0〉F

+
K

∑
k=1

ρk

2
‖Aku0 − ut

k‖2
F

∈ arg min
u0∈Rn×L

n

∑
i=1

δ{(u0)i ∈ ∆L−1}+ 〈u0, f 〉+
〈

K

∑
k=1

AT
k pt

k, u0

〉
F

+
ρk

2

〈
K

∑
k=1

AT
k Aku0, u0

〉
F

− ρk

〈
K

∑
k=1

AT
k ut

k, u0

〉
F

∈ arg min
u0∈Rn×L

n

∑
i=1

δ{(u0)i ∈ ∆L−1} − ρk

〈
u0,− 1

ρk
f
〉
− ρk

〈
− 1

ρk

K

∑
k=1

AT
k pt

k, u0

〉
F

+
ρk

2

〈
K

∑
k=1

AT
k Aku0, u0

〉
F

− ρk

〈
K

∑
k=1

AT
k ut

k, u0

〉
F

∈ arg min
u0∈Rn×L

n

∑
i=1

δ{(u0)i ∈ ∆L−1}+ ρk

2

〈
K

∑
k=1

AT
k Aku0, u0

〉
F

− ρk

〈
K

∑
k=1

AT
k ut

k −
1
ρk

(
f +

K

∑
k=1

AT
k pt

k

)
, u0

〉
F

We see that we can minimize the whole function by minimizing each component of u0

56



3 Examples and Experiments

separately.

(ut+1
0 )i ∈ arg min

(u0)i∈RL
δ{(u0)i ∈ ∆L−1}+ ρk

2

〈(
K

∑
k=1

AT
k Ak

)
i

(u0)i, (u0)i

〉

− ρk

〈(
K

∑
k=1

AT
k ut

k −
1
ρk

(
f +

K

∑
k=1

AT
k pt

k

))
i

, (u0)i

〉

∈ arg min
(u0)i∈RL

δ{(u0)i ∈ ∆L−1}+
ρk

(
∑K

k=1 AT
k Ak

)
i

2
〈(u0)i, (u0)i〉

− ρk

(
K

∑
k=1

AT
k Ak

)
i

〈
1(

∑K
k=1 AT

k Ak

)
i

(
K

∑
k=1

AT
k ut

k −
1
ρk

(
f +

K

∑
k=1

AT
k pt

k

))
i︸ ︷︷ ︸

(v)i

, (u0)i

〉

∈ arg min
(u0)i∈RL

δ{(u0)i ∈ ∆L−1}+
ρk

(
∑K

k=1 AT
k Ak

)
i

2
‖(u0)i − (v)i‖2

The last problem can be efficiently solved by the “(Scaled) Projection onto the Probability
Simplex” algorithm.

3.3.2 Scaled Projection onto Probability Simplex

One subproblem that arises during the master update is the following:

Problem 3.3.3 (Scaled Projection onto Probability Simplex). Consider the minimization
problem

w∗ = arg min
w∈Rn

δ∆L−1(w) +
τ

2
‖w− v‖2

H′

= arg min
w∈Rn

δ∆L−1(w) +
1
2
(w− v)TH(w− v)

where ∆L−1 is the probability simplex and H := τH′ is a diagonal matrix with strictly positive
entries only and τ > 0.

The scaling matrix H allows us to define different weights in case one would like to
favor a certain segment in the image over another. In our original segmentation task
3.3.1 we can simply set H to be the identity matrix but it might be interesting to tune
H to get a more favorable outcome. Therefore, in this section, we provide a modified
algorithm based on [Duc+08] that can also deal with scaling. The authors in [WC13]
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give a simplified proof based on the KKT conditions of Problem 3.3.3. We take their
proof and modify it to include a diagonal scaling matrix H.

(a) reference image (b) scaling example 1 (c) scaling example 2

Figure 3.9: Scaling examples with high weights on a single color

Figure 3.9 visualizes the effect of two different weight matrices and compares it with
an image that has not been scaled.

We claim that Algorithm 12 solves Problem 3.3.3.

Algorithm 12: Scaled Projection onto Probability Simplex

1 Rearrange entries in H and v based on sorting of Hv in descending order

2 ρ = max
{

1 ≤ j ≤ L : H(jj)v(j) +
(

∑
j
i=1

1
H(ii)

)−1 (
1−∑

j
i=1 v(i)

)
> 0

}
3 λ∗ =

(
∑

ρ
i=1

1
H(ii)

)−1 (
1−∑

ρ
i=1 v(i)

)
4 return w∗i = max

{
vi +

λ∗

Hii
, 0
}

Observe its fast run time ofO(n log n) due to the sorting operation at the very beginning
and that it can be efficiently implemented for both CPUs and GPUs.2

In order to prove our claim, we start by stating the Lagrangian of Problem 3.3.3 with its
Lagrange multipliers λ ∈ R and β ∈ Rn

≥0. Obviously, the probability simplex enforces
the values of w to be non-negative and to sum up to one.

L(w, λ, β) :=
1
2
(w− v)TH(w− v)− λ

(
n

∑
i=1

wi − 1

)
−

n

∑
i=1

βiwi

=
1
2
(wTHw− vTHw− vTHTw + vTv)− λ

(
n

∑
i=1

wi − 1

)
−

n

∑
i=1

βiwi

2An efficient implementation using PyTorch can be found here: https://gist.github.com/filipre/
f90c2b49d55ebd89329218a0f64dcf5a
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We take the gradient with respect to w. Remember that H is diagonal and its values
are strictly positive.

∇wL(w, λ, β) =
1
2
(HT + H)w− 1

2
HTv− 1

2
Hv− λ− β

= H(w− v)− λ− β

⇒ ∂L(w, λ, β)

∂wi
= H(wi − vi)− λ− βi

If w is optimal, these KKT-conditions hold:

Hiiw∗i − Hiivi − λ∗ − β∗i = 0 ∀i

Hiiw∗i ≥ 0 ∀i

β∗i ≥ 0 ∀i

w∗i β∗i = 0 ∀i
n

∑
i=1

w∗i = 1

On the one hand, if w∗i > 0 then β∗i = 0 due to the “complementary slackness”
condition and thus, Hiiw∗i = Hiivi + λ∗ > 0. On the other hand, if w∗i = 0 then
0 = Hiivi + λ∗ + β∗i = 0 and Hiivi + λ∗ = −β∗i ≤ 0.

Now, if we sort the entries in the vector Hv in descending order, we see that the
sequence H(ii)v(i) + λ∗ is also descending and that there exists an index (ρ + 1) where
the sequence starts to be non-positive. We also confirm that at least one value in
H(ii)v(i) + λ∗ is strictly positive. Otherwise, we could not fulfill the condition that all
elements in w∗ sum up to one.

H(11)v(1) + λ∗ · · · ≥ H(ρρ)v(ρ) + λ∗ > 0 ≥ H(ρ+1ρ+1)v(ρ+1) + λ∗ ≥ · · · ≥ H(LL)v(L) + λ∗

H(11)w
∗
(1) · · · ≥ H(ρρ)w

∗
(ρ) > 0 = H(ρ+1ρ+1)w

∗
(ρ+1) = · · · ≥ H(LL)w

∗
(L)

Using the condition ∑n
i=1 w∗i = 1 gives us a handy formula for λ∗.

1 =
n

∑
i=1

w∗i =
ρ

∑
i=1

w∗(i) =
ρ

∑
i=1

(
v(i) +

λ∗

H(ii)

)
=

ρ

∑
i=1

v(i) + λ∗
ρ

∑
i=1

1
H(ii)

λ∗ =

(
ρ

∑
i=1

1
H(ii)

)−1(
1−

ρ

∑
i=1

v(i)

)
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What’s left is a way to find the right ρ ∈ {1, . . . , L}. Then we can calculate λ∗ and
finally w∗ via

w∗i = max
{

vi −
λ∗

Hii
, 0
}

One simple approach would be to try out every possible ρ and check if it fulfills the
KKT-conditions. This works fine in our segmentation task because the run time of the
algorithm is dominated by the sorting step and L is small. But, we can also perform a
smarter test for ρ which will be faster for large L. We utilize the following lemma.

Lemma 3.3.1. The optimal ρ can be obtained by increasing ρ until the test below becomes
non-positive.

ρ = max

1 ≤ j ≤ L : H(jj)v(j) +

(
j

∑
i=1

1
H(ii)

)−1(
1−

j

∑
i=1

v(i)

)
> 0


Proof. We perform a case splitting and show that the test stays positive for j ≤ ρ and
becomes non-positive for j > ρ.

Case I: j = ρ

H(ρρ)v(ρ) +

(
ρ

∑
i=1

1
H(ii)

)−1(
1−

ρ

∑
i=1

v(i)

)
= H(ρρ)v(ρ) + λ∗ > 0 by definition of ρ
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Case II: j < ρ

H(jj)v(j) +

(
j

∑
i=1

1
H(ii)

)−1(
1−

j

∑
i=1

v(i)

)

=

(
j

∑
i=1

1
H(ii)

)−1( j

∑
i=1

1
H(ii)

H(jj)v(j) + 1−
ρ

∑
i=1

v(i) +
ρ

∑
i=j+1

v(i)

)

=

(
j

∑
i=1

1
H(ii)

)−1( j

∑
i=1

1
H(ii)

H(jj)v(j) +
ρ

∑
i=1

1
H(ii)

λ∗ +
ρ

∑
i=j+1

v(i)

)

=

(
j

∑
i=1

1
H(ii)

)−1( j

∑
i=1

1
H(ii)

H(jj)v(j) +
j

∑
i=1

1
H(ii)

λ∗ +
ρ

∑
i=j+1

1
H(ii)

λ∗ +
ρ

∑
i=j+1

v(i)

)

=

(
j

∑
i=1

1
H(ii)

)−1


j

∑
i=1

1
H(ii)

(H(jj)v(j) + λ∗︸ ︷︷ ︸
>0

) +
ρ

∑
i=j+1

v(i) +
λ∗

H(ii)︸ ︷︷ ︸
>0

 > 0

Case III: j > ρ

H(jj)v(j) +

(
j

∑
i=1

1
H(ii)

)−1(
1−

j

∑
i=1

v(i)

)

=

(
j

∑
i=1

1
H(ii)

)−1( j

∑
i=1

1
H(ii)

H(jj)v(j) + 1−
j

∑
i=1

v(i)

)

=

(
j

∑
i=1

1
H(ii)

)−1( ρ

∑
i=1

1
H(ii)

H(jj)v(j) +
j

∑
i=ρ+1

1
H(ii)

H(jj)v(j) + 1−
ρ

∑
i=1

v(i) −
j

∑
i=ρ+1

v(i)

)

=

(
j

∑
i=1

1
H(ii)

)−1


ρ

∑
i=1

1
H(ii)

H(jj)v(j) + λ∗︸ ︷︷ ︸
≤0

+
j

∑
i=ρ+1

(
1

H(ii)
H(jj)v(j) − v(i)

)
︸ ︷︷ ︸

≤0

 ≤ 0

For the last inequality, notice that for all i ∈ [ρ + 1, . . . , j] the entries H(ii)v(i) are sorted
in a descending order. Rearranging H(jj)v(j) ≤ H(ii)v(i) concludes the proof.
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3.3.3 Derivation of the Worker Updates

Next, we derive the uk update for a worker k.

ut+1
k ∈ arg min

uk∈Rn×L
L(u0

t+1, {ut+1
1 , . . . , ut+1

k−1, uk, ut
k+1, . . . , ut

K}; {pt
k})

∈ arg min
uk∈Rn×L

L(u0
t+1, uk; pt

k)

∈ arg min
uk∈Rn×L

α
L

∑
l=1
‖∇uk

l‖1,δ − 〈pt
k, uk〉F +

ρk

2
‖Akut+1

0 − uk‖2
F

∈ arg min
uk∈Rn×L

α
L

∑
l=1
‖∇uk

l‖1,δ − ρk

〈
1
ρk

pt
k, uk

〉
F
− ρk〈Akut+1

0 , uk〉F +
ρk

2
〈uk, uk〉F

∈ arg min
uk∈Rn×L

α
L

∑
l=1
‖∇uk

l‖1,δ +
ρk

2

∥∥∥∥uk −
(

Akut+1
0 +

1
ρk

pt
k

)∥∥∥∥2

F

⇔ (ut+1
k )l ∈ arg min

(uk)l∈Rn
α‖∇(uk)

l‖1,δ +
ρk

2

∥∥∥∥∥(uk)
l −
(

Akut+1
0 +

1
ρk

pt
k

)l
∥∥∥∥∥

2

The last minimization problem is the “Huber-ROF” problem which is a modification of
the original ROF problem [ROF92].

3.3.4 Solving the Huber-ROF Problem

Huber-ROF is defined as follows:

Problem 3.3.4 (Huber-ROF). Let ∇ ∈ Rm×n, v ∈ Rn and α, ρ > 0. Then

u∗ = arg min
u∈Rn

α‖∇u‖1,δ +
ρ

2
‖u− v‖2

= arg min
u∈Rn

α
m

∑
i=1
|∇iu|1,δ +

ρ

2
‖u− v‖2

is the Huber-ROF problem where | · |1,δ : R→ R is the Huber function given by

|u|1,δ =

{
1
2 e2 |u| ≤ δ

δ|u| − 1
2 δ2 |u| > δ

There are different ways on how to solve this problem. For our segmentation task, ∇
can become very large but also very sparse. Depending on the implementation and
available software we need to choose the right method. In this section, we show two
different approaches.
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Half-Quadratic Minimization

The “Half-Quadratic Minimization” or “Gradient Linearization Iteration” method
[NC07] provides a fast method where the speed depends on how fast one can solve a
linear system defined by ∇. For example, if a sparse linear solver is available, then even
with a large but sparse matrix, Half-Quadratic Minimization can be attractive to use.
During our application to the segmentation task, it turned out very successful when
letting the calculation run on a CPU due to the existence of fast sparse solvers provided
by the SciPy project [Vir+20]. However, for GPUs, there are no sparse linear solvers
available in PyTorch and we had to utilize the method described in the next part.

Now, we solve Problem 3.3.4 and point out the main idea of the optimization procedure.
To obtain the solution, we construct the matrix L(u) and z and run following “relaxed
fixed-point iteration”:

L(ut)ut+1 = z

We only show how L and z are constructed but refer to [NC07] why this construction
works. There, the authors also solve the problem more generally, explain when Half-
Quadratic Minimization is applicable and show the equivalence between Half-Quadratic
Minimization and Gradient Linearization Iteration. Starting off, we take the derivative
of the Huber function denoted as h′.

d
dx
|x|1,δ = h′δ(x) =

{
1
δ if x ≤ δ
sign x

x otherwise

We use h′ in matrix L. z is a constant based on the original problem.

L(u) = ρ + α∇T diag([h′δ(ui)]
n
i=1)∇

z = ρv

Each iteration, we solve the linear system and update L with the new obtained variable
u.

Solving Huber-ROF via a First-Order Primal-Dual Algorithm

Another approach to solving the Huber-ROF problem is by a primal-dual algorithm.
In specific, we used the algorithm given in [CP11] that showed good results on many
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other computer vision tasks as well. In its most general form, their algorithm is very
related to PDHG [ZC08] and given by

Algorithm 13: First-Order Primal-Dual Algorithm

1 Choose initial γprimal, γdual > 0, θ ∈ [0, 1], u0, p0 and set ū0 = u0

2 for t = 0, 1, . . . , T − 1 do
3 pt+1 = (I + γdual∂F∗)−1(pt + γdual∇ūt)

4 xt+1 = (I + γprimal∂G)−1(ut − γprimal∇Tpt+1)

5 ūt+1 = ut+1 + θ(ut+1 − ut)

6 end

for the primal-dual problem:

min
u

max
p
〈∇u, p〉+ G(u)− F∗(p)

Here, we set F(∇u) = α‖∇u‖1,δ and G(u) = ρ
2‖u− v‖2 and then solve the resolvent

operators.

The convex conjugate of the Huber function is

F∗(p) = δP(p)− δ

2
‖p‖2

where P = {p : ‖p‖∞ ≤ 1}. But, we also scale the Huber function by α in the objective.
Thus, by the scaling properties of the convex conjugate, we get

F∗α (p) = αF∗
( p

α

)
= αδP

( p
α

)
− αδ

2

∥∥∥ p
α

∥∥∥2
= αδPα (p)− αδ

2α2 ‖p‖2 = δPα (p)− δ

2α
‖p‖2

with the new Pα = {p : ‖p‖∞ ≤ α}. What’s left to do is to evaluate the resolvent operator
(I + σ∂F∗)−1(p + γdual∇ū). For notation, we set p̃ = p + γdual∇ū. We get

pi =
p̃i

1 + γdualδ
α

/
max

(
α,

p̃i

1 + γdualδ
α

)

The resolvent of ρ
2‖u− v‖2 can be easily computed. Again, we set ũ = u− γprimal∇Tp,

derive the term and solve for ui.

ui =
ũi + γprimalρvi

1 + γprimalρ

By choosing appropriate γprimal and γdual we minimize the Huber-ROF.
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3.3.5 Final Algorithm

As before, the dual updates pks are simple gradient ascends optimizations.

pt+1
k = pt

k + ρk(Akut+1
0 − ut+1

k )

Finally, the algorithm for the image segmentation problem is given by

Algorithm 14: Delayed ADMM for image segmentation

1 Initialize global u0
0, local primal {u0

k}K
k=1 and local dual {p0

k}K
k=1

2 Choose appropiate {ρk}K
k=1

3 for t = 0, 1, . . . do
4 ∀i : (v)i =

1
(∑K

k=1 AT
k Ak)i

(
∑K

k=1 AT
k ût

k −
1
ρk

(
f + ∑K

k=1 AT
k p̂t

k

))
i

5 ∀i : (ut+1
0 )i ∈ arg min(u0)i∈RL δ{(u0)i ∈ ∆L−1}+ ρk(∑K

k=1 AT
k Ak)i

2 ‖(u0)i − (v)i‖2

6 for k = 1, . . . , K do
7 Distribute to worker k
8 ∀l : (ut+1

k )l ∈

arg min(uk)l∈Rn α‖∇(uk)
l‖1,δ +

ρk
2

∥∥∥∥(uk)
l −
(

Akût+1
0 + 1

ρk
pt

k

)l
∥∥∥∥2

9 pt+1
k = pt

k + ρk(Akût+1
0 − ut+1

k )

10 end
11 end

where û0, {ûk} and { p̂k} are possibly delayed variables. We are now in a position where
we can implement each update and perform experiments with delayed variables.
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3.3.6 Simulated Delays

We set the “segmentation factor” α = 0.1, the parameter for the Huber function δ = 0.01
and ρ = 10.0. These parameters were determined experimentally to get an output
similar to Figure 3.8 at the very begining of this section. Like before, we sample the
delay 1 ≤ τ ≤ 10 from a constant and uniform distribution and report the output
image and its scores of the augmented Lagrangian.

By taking a look at the first image results in Figure 3.10, we see that a delay of 3 already
affects the image quality noticeably. The higher the delay, the more artifacts can be seen
in some areas and especially on the boundary regions. This makes sense because it is
more difficult to decide for a color (segment) on these regions and the delays introduce
additional noise.

In Figure 3.11 we observe similar behavior in the uniform delay case but because delays
are less present, the image quality is better. Especially the first row (delay 1 to 5) returns
well-segmented regions even though delays can spike up to 5 in the worst case. This
implies that as long as delays are not constantly present, we can “recover” from even
higher delays.

Let’s see how delays affect the augmented Lagrangian in Figure 3.12.

Similar to the simulated delays in the logistic regression problem, we observe a step
function for the constant distribution. We also see that the delays strongly affect the
scores of the augmented Lagrangian because even the lowest delay (τ = 2, blue line)
cannot reach the baseline when no delays are present (τ = 1, dark blue line).
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Delay 1 Delay 2 Delay 3 Delay 4 Delay 5

Delay 6 Delay 7 Delay 8 Delay 9 Delay 10

Figure 3.10: Constant delay

Delay 1 Delay 2 Delay 3 Delay 4 Delay 5

Delay 6 Delay 7 Delay 8 Delay 9 Delay 10

Figure 3.11: Uniform delay

67



3 Examples and Experiments

0 20 40 60 80 100

Iteration

105

106

Au
gm

en
te

d 
La

gr
an

gi
an

Constant Delay [Tau: 10, Alpha: 0.1, Delta: 0.01, Nodes: 4]
 = 1
 = 5
 = 10

0 20 40 60 80 100

Iteration

105

Au
gm

en
te

d 
La

gr
an

gi
an

Uniform Delay [Tau: 10, Alpha: 0.1, Delta: 0.01, Nodes: 4]
 = 1
 = 5
 = 10

Figure 3.12: Augmented Lagrangian with different delays

68



3 Examples and Experiments

3.3.7 Real Delays

Finally, we present a real asynchronous implementation for the image segmentation
problem. Again, we are interested in the effect of two slow worker on the image quality
and objective function. We leave the hyperparameters the same, i.e. ρk ≡ ρ = 10.0,
α = 0.1 and δ = 0.01. We use a very similar partial barrier implementation as in Section
3.2.3, Algorithm 10 and 11. The full Python code can be found here3.

First, we report that splitting the problem onto different machines improves our global
runtime. In the first run, we only use one worker solving the Huber-ROF problem for
the whole image. Then, we utilize 4 workers that only operate on a subset of the whole
image. All runs perform 100 master iterations.

0 50 100 150 200

Time [s]

105

Au
gm

en
te

d 
La

gr
an

gi
an

Single Worker vs. Multiple Workers
One Worker
Four Workers, Sync
Four Workers, Async

Figure 3.13: Comparison of the augmented Lagrangian between a single worker and
four workers

We see that both the orange and green plot (four workers) stays below the blue plot
(one worker), i.e. they minimize the objective function faster. In addition, four workers
only need half of the time than a single worker to finish the experiment.

Next, to get a better understanding of the asynchronicity, we visualize the update sets
in the master node that occur due to the partial barrier in Figure 3.14. We use a heatmap
where each row represents a master iteration and each column represents a worker.
For example, if one iteration of the master node uses the information from worker

3https://github.com/filipre/master-experiments
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2 and 5, we color the cell black. We set 5 workers and let them run synchronously,
asynchronously, asynchronously with a random sleep after each worker iteration and
asynchronously where two workers are slowed down artificially.
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Figure 3.14: Update sets visualization

Obviously, a synchronous implementation results in a fully black heat map because
each iteration is waiting for all nodes. However, we also see in the second figure that
our workers are all roughly working equally fast. Even though we do not enforce
synchronicity there, we end up with a result very similar to the synchronous one.
By introducing a random sleep of at most 10 seconds, we observe how the workers
communicate asynchronously. The last visualization shows how the update sets look
like when we have two very slow workers as we can see by the large gaps in columns 2
and 5.

Especially in the first few iterations of a run, two slow workers (here workers 2 and
5) affect the image quality noticeably. Notice in Figure 3.15a how the fast workers
(1, 3 and 4) already finished their total variation minimization while workers 2 and
5 still need time. If we would run the algorithm in synchronization, then the whole
image quality would suffer because the fast workers would be slowed down by the
slow workers.

If we take a look at the augmented Lagrangian in Figure 3.15b, we observe a step
function. This occurs because the fast workers reached their optimum while the slow
workers still need to optimize towards it.

Nevertheless, at the end of the experiment, we still get a well-segmented image as shown
in Figure 3.16 regardless of whether we run it synchronously or asynchronously.
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(a) output image
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(b) related augmented Lagrangian

Figure 3.15: Results after only a few iterations of the 2 slow workers

(a) synchronous (b) asynchronous

Figure 3.16: Final image after at least 100 worker iterations of each (slow) worker
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Interestingly enough, we also converge faster to a near optimum in the asynchronous
case than in the synchronous one. In Figure 3.17 we report the augmented Lagrangian
with respect to the real-world time. Even though the synchronous and asynchronous
scores reach equal scores later in the experiment, at the beginning we minimize the
objective function in asynchronicity faster than in synchronicity. This coincides with
our observations from the “real" logistic regression experiments in Section 3.2.3.
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Figure 3.17: Comparison between synchronous and asynchronous mode
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3.4 PyTorch’s distributed Package

During development, it turned out that PyTorch [Pas+19] in combination with its
distributed package is a good candidate to implement a distributed optimization
algorithm. First, it uses Python as an interface language providing a simple and
fast-to-learn language for researchers. Second, PyTorch already implements many
useful methods for CPUs and GPUs which accelerated development during the thesis.
And third, it provides useful methods for writing a distributed application via the
distributed package. In this section we are going to highlight important methods from
this package and explain how we used it in our logistic regression 3.2 and segmentation
3.3.7 applications.

In general, there exist two phases that need to be implemented. In the beginning,
all nodes within a network must start up and connect to a “master” node. This
master node can deviate from the master node defined in a distributed algorithm since
communication can also happen between any two nodes and is not necessarily limited
between master and workers only. Once all nodes have started and all connections have
been established, the actual communication can happen. PyTorch provides methods for
general point-to-point communication between two nodes or very specific “broadcast”,
“reduce” and “gather” operations between workers and one master. Before going into
details, we would like to point out to the documentation4 and one great tutorial5 which
can be read supplementary to this section here. We start with the firstly mentioned
“start-up” phase.

Establishing communication between nodes is implemented very easily by setting 4
environment variables and calling one method only:

assert "WORLD_SIZE" in os.environ, "WORLD_SIZE not set"
assert "RANK" in os.environ, "RANK not set"
assert "MASTER_ADDR" in os.environ, "MASTER_ADDR not set"
assert "MASTER_PORT" in os.environ, "MASTER_PORT not set"
torch.distributed.init_process_group(backend=’gloo’)

WORLD_SIZE refers to the number of nodes within the network including the master
node. For example, if there are 4 workers and one master node, then the value should
be 5. Next, RANK is the node identifier. By definition, the rank of the master node
must be 0 while the rank of the other nodes should increment for each existing node
in the network. The last environment variables MASTER_ADDR and MASTER_PORT define
the network address of the machine that runs the master node to make a connection

4https://pytorch.org/docs/stable/distributed.html
5https://pytorch.org/tutorials/intermediate/dist_tuto.html
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between one node and their master. For the master node, this can refer to localhost and
any port. Finally, calling torch.distributed.init_process_group(backend=’gloo’)
blocks until all other nodes have called this method as well and all initialization
processes return successfully. PyTorch relies on a “backend” that implements the actual
network communication and there exist different options depending on whether one
would like to utilize CPUs or GPUs and what kind of operations (transfer of tensors
vs. reduce operations) are used. In general, “NCCL” should be used for GPUs while
“Gloo” is suitable for CPUs.

In our application, we only used send and recv methods for sending and receiving
tensors synchronously and isend and irecv for doing the same asynchronously. Be-
cause these calls are only available for CPUs, we run the actual calculation on GPUs
and transfer the tensors back to the CPU to send them. Similarly, we receive tensors on
the CPU and send them to the GPUs for calculations.

torch.distributed.send(tensor=tensor, dst=dst, tag=tag)
torch.distributed.recv(tensor=tensor, src=src, tag=tag)

It is only possible to send and receive PyTorch tensors. In the logistic regression
application, it was necessary to send and receive full PyTorch models though. Thus, we
had to serialize a model first and call send/recv multiple times. To do this, we used
the optional tag parameter that matches a send to the right recv command and vice
versa. Both calls block until the transfer is successful or until an error occurs.

In the asynchronous case, isend and irecv behave very similar but do not block
the main thread. Instead, they return a req request object and the user can either
req.wait() until the transfer finishes or issue the status by calling the boolean method
req.is_completed().

# method 1
req =torch.distributed.isend(tensor=tensor, dst=dst, tag=tag)
req.wait() # blocks thread until sending/receiving finishes

# method 2
req =torch.distributed.irecv(tensor=tensor, src=src)
while not req.is_completed():

time.sleep(1) # check every second for status of transfer.
# do something else

In theory, using the second method makes it possible to perform other tasks until the
new tensor is available. In practice however, due to a bug within the req.is_completed()
method, one has to utilize a slightly different approach:
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Instead of calling req.is_completed() from the main thread, one must call req.wait()
in a different thread and wait until it terminates.

def daemon_thread(req):
req.wait()

req =dist.irecv(tensor=tensor, src=src)
t =threading.Thread(target=daemon_thread, args=(req,), daemon=True)
t.start()
while t.is_alive():

time.sleep(1) # check every second for status of transfer.
# do something else

We raised this issue to the authors of PyTorch here6. It also mentions our temporal fix
with accompanying code examples. The exact implementation used by our experiments
can be found at the full code repository7.

6https://github.com/pytorch/pytorch/issues/30723
7https://github.com/filipre/master-experiments
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4 Conclusion

I
n this thesis, we discussed various methods to model asynchronicity in real
life, for example by using a partial barrier or using variable delays within
the iteration. We covered the theory of asynchronous SGD, asynchronous

BCD, and an asynchronous ADMM algorithm and we have seen different strategies
to show the convergence of these algorithms under the right assumptions and the
right hyperparameters. In general, the convergence was depending on the Lipschitz
continuity constant and the step size.

In the practical section, we introduced an ADMM algorithm with delays and we used it
to solve two problems: First, a logistic regression classification problem and second, an
image segmentation problem. For the latter problem, we used a (scaled) projection onto
the probability simplex and a Huber-ROF solver. In a real-world implementation, we
ran the algorithm on a computer cluster and observed how asynchronous coordination
speeds up the computation when some nodes work slower than others. However, once
delays increase too much, it does affect the quality of the results. Last but not least, we
have shown how we utilized PyTorch in a distributed setting and we also provided the
code that has been used throughout our experiments for replication purposes.

4.1 Further Research

Nevertheless, we recommend further research on the following topics:

1. First, it would be interesting to implement more difficult tasks that explicitly
require distributed computing. All our experiments were simple and could be
solved using a single machine only. Additionally, all distributed tasks were
approximately similar difficult and we had to enforce different calculation times.
Obviously, there are many problems that offer greater variety.

2. Second, given that GPUs became essential in machine learning and in deep
learning specifically, shifting the focus towards shared memory architectures
seems promising to cover more real-world applications.
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3. Third, it is not unlikely that there exists a greater, unified theory to explain all
asynchronous algorithms that we have covered in this thesis.

4. Fourth, in our thesis we only discussed centralized algorithms but sometimes, we
can only perform our calculations decentralized. Even though we mentioned some
decentralized algorithms, we recommend investing further research on this topic.

5. Last but not least, we see an opportunity in writing a survey on the topic of
asynchronous algorithms due to the increase of interest and new methods. We
also believe that many methods are very related and proving their relationships
with each other appears to be very valuable to the distributed optimization
community.
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