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Abstract—Graph generation plays an important role in biology,
sociology and computer science as many problems can be mod-
eled as a graph. Explicit generation methods usually succeed in
capturing one specific property of a graph but fail to capture the
others. To tackle this problem, “NetGAN” introduced an implicit
method that can learn multiple properties of a graph by using
the “generative adversarial network” architecture. Even though
NetGAN performs well in comparison to state of the art methods,
there is still room for improvements. In this guided research
project we first give further insights into the generation process
of NetGAN by visualizing how random walks are generated.
Then, we propose improvements for the generator’s architecture
to generate graphs with different sizes and without retraining.

I. INTRODUCTION

NetGAN [1] introduces a new method to generate big
graphs and networks. Many methods have been introduced
to generate new graphs with certain properties [2]. However,
these methods usually work in an explicit way and one needs
to state explicitly which properties a new graph should have.
Additionally, explicit methods usually only focus on one or
a few graph properties and it is not clear how to combine
multiple methods together. In contrast, NetGAN introduces
an implicit generation process that learns graph properties
of an input graph and outputs a new, different graph with
similar properties. NetGAN builds on the Wasserstein GAN
architecture [3] which is widely used in the computer vision
community to generate new images from a desired distribution.

A. Architecture

Like any other Generative Adversarial Network [4], Net-
GAN consists of a generator and a discriminator. Instead
of generating the graph directly, we generate random walks
instead. A random walk is a sequence of vertices and edges
with a fixed size and once we generated a sufficiently large
amount of random walks, we use them to construct the new
desired graph. The generator tries to generate plausible random
walks while the discriminator has to judge whether a random
walk has been generated artificially or is a real one from the
input graph. Both the generator and the discriminator use a
Long Short-term Memory (LSTM) structure [5] as a model.

Figure 1 summarizes the generation process more in detail.
We will now highlight important components that play a role
for us later, but we refer to the original paper [1] for more
details.

Fig. 1: NetGAN architecture

Let N be the number of nodes of the input graph (V,E) and
let T be the length of a random walk. Each new node vi+1

of the walk is generated by an LSTM-cell that receives the
previously sampled node vi, the cell state Ci and the hidden
state hi as an input. The cell outputs a vector p ∈ RN from
a categorical distribution and the new node vi+1 will be then
sampled from it.

However, because we are dealing with large graphs, N can
become very large and it can become very costly to output
p directly. Instead, the cells output a smaller vector o ∈ RK

where K � N . Then, to sample from it we perform an up-
projection using the matrix Wup ∈ RK×N . Similarly, after
sampling the N -dimensional vector it needs to be reduced
to K again by down-projecting it with the matrix Wdown ∈
RN×K . Both Wup and Wdown will be learned during training.

To sample from a categorical distribution we perform
the Gumbel-max trick [6][7]: Let z be sampled from a
Gumbel(0, 1) distribution. Then, the new node is determined
by using the arg-max operation

vi+1 = argmax
j∈{1,...,N}

pj + zj

Obviously, we cannot differentiate this step. Instead, during
the backward pass we perform a Softmax operation which
can be thought of as a smooth approximation of the arg-max
operation and which is indeed differentiable.

pi =
exp ((log πi + gi)/τ)∑k

j=1 exp ((log πj + gj)/τ)
(1)

The parameter τ controls the competing goals between a
good approximation but bad gradients and vice versa.



B. Limitations

Due to its architecture there are currently two limitations
that we are going to focus on: First, our random walks can only
generate a graph with the same number of nodes as the input
graph, namely N nodes (or smaller, if some nodes are never
sampled). However, certain graph properties are independent
of size and we would be interested in generating graphs
with different sizes. Second, once our input graph changes,
we cannot propagate these new information into an existing,
already trained model. At the moment, we would have to
retrain the whole model to account for a tiny graph change.

The following sections are outlined as followed: Before we
modify NetGAN, we want to get a better understanding of
how random walks are generated in the first place. To do
that, we show a simple visualization technique in II. Then,
we modify NetGAN’s architecture to solve the two problems
above in section III. To measure its performance, we introduce
an additional evaluation metric in section IV and perform
experiments in section V. At the end, we summarize our results
and give a short outlook in VI.

II. VISUALIZING RANDOM WALKS

Before we modify the up and down sampling process in
the generator, we first want to better understand it. To do so,
we visualize this process by using a t-SNE [8] plot of the up
and down projection matrix W and highlight one instance of a
random walk. This allows us to better understand how random
walks are build step by step.

Let Wup ∈ RK×N and Wdown ∈ RN×K be the matrix
responsible for the up and down sampling respectively. We
will focus our analysis on Wup but the same technique can
be applied on Wdown as well. The up projection is a simple
vector-matrix multiplication or a scalar product and during
training we can think of it as a similarity measure. Each of
the N columns of Wup represents a K-dimensional vector of
a node and we can visualize their relationship to each other
by using t-SNE.

Figure 2a and 2b shows such a plot for the data set “Cora
ML” [9] and “Citeseer” [10]. The coloring matches each
node’s label. We notice that the nodes exhibit certain structure
within the graph. Not only they form clusters but the clusters
also matches their labels. This is interesting, because we did
not give NetGAN access to the label data. One could follow
that nodes within one class are more “similar” than labels
from another. Of course, by looking at the data set this is not
surprising but it is good to see this behaviour reflecting in the
graph.

Now, in order to visualize a random walk of length T , we
are going to modify NetGAN slightly: Each LSTM cell should
not only sample the next node for the walk, but it should
also output the N -dimensional probability vector which has
been used for the sampling. We then use these T vectors and
generate T plots each showing which node has been sampled
before (visualized by a black line) and which nodes might be
sampled next (indicated by the blue transparent spheres where
the transparency is set by the node’s probability to be sampled

next). Remember the two “modes” of our sampling procedure.
We use the “hard”, arg-max mode to sample the next node and
we use the “smooth”, Softmax mode to visualize alternatives.
For τ we chose 0.5 as this value is already small but still
helps us to show some alternative nodes. However, the “hard”
sampling is independent of it.

Figure 3 and 4 show one random walk for Cora ML and
Citeseer respectively and in the Appendix VII we listed a
few more. In general, once a node jumps into one cluster,
it stays there and only samples nodes around him. This makes
sense for Cora ML and Citeseer, because papers refers to other
papers from the same research community much more often
than from other communities. Additionally, a random walk
might also consists of one node multiple times because of that.
The same can be said for the offered alternatives highlighted
by blue circles. Nevertheless, it also happens that the random
walk changes a cluster. In figure 3 the random walk sampled
one node from another one but then returned back to the old
cluster. In the Appendix there are also graphs where jumping
occurs more often.

III. NN

We would like to have a model that can generate graphs
with different node sizes. One obvious idea would be to extend
Wup and Wdown to sample from a probability vector with N ′

elements instead of N . However, it is not clear how one would
extend W with meaningful data. In order to solve this problem,
we will first highlight the second problem with NetGAN:
Assume your input graph is not fixed but grows (in terms
of nodes) over time. Currently, for any new node we would
have to fully re-train NetGAN again to make usage of the
new information. This can become very time consuming and
inefficient.

A. Neural Network Method

Many graph data sets do not only contain the structure of the
graph but also provide additional node attributes, i.e. each node
comes with an additional vector of a certain dimensionality
that can contain any kind of data. Can we use this information
for our problem? Our change to NetGAN uses these node
attributes to “identify” a node and to generate the up and
down projection for it. Instead of learning W directly during
the training, NetGAN learns a neural network fW which
takes node attributes X ∈ RN×D as input and outputs two
matrices Wup ∈ RK×N and Wdown ∈ RN×K . Notice that the
dimensions of W depend on the input dimension X , i.e. if
X grows in size, then also does W . Or in other words, if the
graph changes over time, we do not have to retrain NetGAN
again because we can reuse the weights of fW to generate our
new projection matrices.

Figure 5 shows how the change fits into the existing
structure of NetGAN. It comes with the consequence that
two nodes with similar node attributes also generate similar
columns (or rows) in W . One need to evaluate whether this
behaviour is meaningful for a given data set. In addition,
the node attributes need to be expressive enough to correctly



(a) Cora ML (b) Citeseer

Fig. 2: t-SNE plot with label information

Fig. 3: Random Walk of Cora ML

Fig. 4: Random Walk of Citeseer



Fig. 5: NetGAN Modification

distinguish clearly different nodes. For instance, if all nodes
own the same attributes, then our approach clearly will not
work as we would then sample all nodes with an uniform
probability distribution in contrast to the real one.

B. 1-Nearest-Neighbour Method

As an alternative, we also introduce a simpler, second
method that we will use as a baseline later in experiment V-A.
Instead of passing the node attributes through a neural network
to generate W , we could also use the node attributes only for
identifying the most similar node and then copy its column
(or row) from the existing free variable matrix W . In specific,
this method consists of following steps:

1) Train the original NetGAN implementation using a
graph G = (V,E,X) where X ∈ R|V |×D represents the
node attributes of V . Save the up and down projection
matrix Wup and Wdown.

2) Obtain a new graph G′ = (V ′, E′, X ′) where |V ′| >
|V |.

3) For each node in G′, find its 1-nearest-neighbour in G
in respect to their node attributes X ′ and X . Use the
cosine distance as a similarity measure.

4) Each node copies the corresponding column (or row)
from Wup (or Wdown) that matches to their 1-nearest-
neighbour in G and constructs a new up and down
projection matrix W ′up and W ′down which are now larger
in size.

As a similarity measure for 1-NN we use the cosine distance
because we are only interested in the orientation of the vectors
but not in their lengths.

In contrast to the neural network method, this one does not
generate new entries in W but only copies existing entries.
On the one hand, this change gives us fewer parameters
and hyperparameters in our model which results into faster
learning and easier parameter tuning. On the other hand, the
model might not perform well when the node attributes are
all different altogether. We would expect, that a good neural
network should learn the underlying distribution of them and
also generalize to node attributes which might differ heavily.

IV. DEEPWALK EVALUATION

We introduce a new evaluation metric based on DeepWalk
helping us to judge our modification from the previous section.
The DeepWalk [11] method creates a latent representation of

the vertices for a given graph that tries to capture underlying
graph properties. A graph (V,E) will be transformed into a
collection of d-dimensional vectors of size |V | where each
vector represents a vertex of the graph. Revisit the t-SNE plot
in figure 2a and 2b that also show representations of vertices
in two dimensions. We notice that each node is colored by
it’s corresponding label and that the nodes build clusters by
their labels, even though, we never gave NetGAN access to
the label information. Can we use these label information to
evaluate a generated graph by NetGAN?

First, we generate a certain number of random walks that
represents a new graph. Second, we feed these random walks
into DeepWalk to generate a latent representation of the nodes.
Third, we combine the latent representation with the label
information and train a simple logistic regression classifier
using the classification accuracy as a new evaluation metric
for NetGAN. If we generate a graph that captures the label
information well, then the classification score will be high.
Otherwise, the generation process is flawed and the classifica-
tion score will be low.

Because randomness influences the evaluation score, we try
to lower its variance by sampling sufficiently many random
walks, using k-fold cross validation for the classification and
by running the evaluation metric (with DeepWalk) multiple
times and averaging over it.

V. EXPERIMENTS

We highlight three experiments that led some insights into
the proposed modification.

A. Graph Shrinking

We would like to see how our method performs once new
graph data is available. To do that we would train a model
with the current graph, wait until the graph changes and
then reinitialize NetGAN using its old weights but new node
attributes to obtain a different generation process. However,
because our graph data sets do not grow in their node size, we
emulate this growth by doing it the other way round, namely
by shrinking it to a smaller size and then adding nodes back.
First, we shrink the graph. Second, we train NetGAN using the
smaller graph. Third, we use the model of the smaller graph
but reinitialize NetGAN with the full graph. Last but not least,
we evaluate the DeepWalk accuracy of the full graph.

For shrinking, we use the following algorithm: Start with
your full graph. Randomly remove 1% of its nodes and assert
that the new graph is still connected. If it is not connected,
undo and repeat the removal step until a suitable set of nodes is
found. Repeat the whole procedure until the graph consists of
10% of its original number of nodes. Notice that by following
this algorithm each smaller graph will be a sub-graph of the
previous ones. This is another countermeasure to lower the
effects of randomness in the evaluation process later.

We will now describe the experiment more in detail: We use
Cora ML as our data set and generate 91 different sub-graphs
(10% to 100%). For each sub-graph we learn a new NetGAN
model with these hyperparameters



Hyperparameter Value
Data set Cora ML

Batch size 128
Max. iterations 20000

Evaluation frequency 2000
Wdown discriminator size 128
Wdown generator size 128
Wup discriminator size 30
Wup generator size 40
fW hidden layers [336]

Discriminator iterations 3:1
L2 generator penalty 10−7

L2 discriminator penalty 5 · 10−5

Learning rate 10−4

Temperature start 5
Random walk length T 16

TABLE I: Hyperparameters

Size fW fW w/ Batch Norm 1-NN
10% 0.495 0.386 0.560
20% 0.537 0.482 0.587
30% 0.594 0.524 0.617
40% 0.635 0.597 0.664
50% 0.691 0.665 0.701
60% 0.705 0.695 0.715
70% 0.751 0.733 0.731
80% 0.759 0.752 0.772
90% 0.799 0.792 0.808

100% 0.827 0.832 0.824

TABLE II: Graph Shrinking Results, DeepWalk Accuracy

Due to time constraints and the amount of models we have
to train, we limit the maximum number of iterations to 20000.
For Wup and Wdown we use the same dimensions as in the
original NetGAN paper. For our neural network, we use a
leaky ReLU activation function with only one hidden layer
of size 2 · (40 + 128) = 336. Therefore we reduce the node
attributes dimension from 2879 over 336 to 168.

For the evaluation, we perform the DeepWalk 10 times with
a graph that has been generated by 600000 random walks. We
report the classification accuracy. Sometimes, it could happen
that one node might not get sampled ever within the random
walks and that the size of the result graph does not match to
the size of the labels. In that case, we “artificially” sample
it by adding a random walk that consists of 16 instances
of that node. Alternatively, we could also remove the nodes’
label and then perform the classification. In our experiments
both methods performed similar scores so we will only report
results for the first method. The next table summarizes the
hyperparameters for the evaluation step.

Hyper Parameter Value
Number of random walks 600000

DeepWalk dimension 64
DeepWalk evaluations 10

Training size 60%
Cross Validation 5 fold

In an earlier experiment the performance was not satisfying
so we also experimented whether “Batch Normalization” [12]
could boost our performance. Figure 6 and table II present our
outcome.

Fig. 6: Shrinking graph experiment results, DeepWalk perfor-
mance

Surprisingly, the most simple method “1-nearest-neighbour”
(1-NN) performed best and batch normalization even made
the performance worse. Even though between 90% and 100%
results are very similar, the lower percentages show a notice-
able difference between the methods. One reason why the
performance is not great might be that our neural network
method needs a graph with a certain size and that 10% of the
original graph could be too low as it does not capture enough
information. However, we would still expect to beat the simple
baseline more often.

B. Hyper-Parameter Search

Another possible reason why we could not do better is that
we used the wrong hyperparameters. The neural network fW
only used one hidden layer with a more or less arbitrary size
and it is not clear whether this is the problem for the bad
performance. In our search we explore other 1-layer networks
with more neurons, multiple hidden layers and whether nor-
malization of the node attributes makes sense. Here, we left
out batch normalization again because it slowed down training
and made results worse in the previous experiment. Besides
the layer of fW , we used the same values from table III.

Here, we use a higher maximum of iterations to rule out
the possibility that our training was too short. In addition, we
also report the Link Prediction ROC results that we get by
the evaluation steps during training. For DeepWalk we use
the same evaluation parameters but change the metric from a
simple accuracy to F1 scores. The results are summarized in
table III. The numbers in the table refer only to the hidden
layer sizes. For example, ”336 - 336” would refer to the
following dimensionality reduction: 2879 → 336 → 336 →
168 = 40 + 128

By looking at the results, normalization of the node at-
tributes seem to make the performance slightly worse. Also, in-
creasing the size of neurons in the 1-hidden layer architecture
worsens our results, even though this could also be influenced
by random noise. For the two- and three-layer architectures the
results are clearly worse. Because we modified the generator
and added many new weights, the L2 penalty factor might be
off. Therefore, we fixed the ”336 - 168” network and modified



1 2 3 Norm? ROC DeepWalk F1

672 0 0 yes 0.917 0.744
672 0 0 no 0.924 0.779
504 0 0 yes 0.917 0.786
504 0 0 no 0.913 0.783
336 0 0 yes 0.919 0.773
336 0 0 no 0.915 0.783
168 0 0 yes 0.916 0.778
168 0 0 no 0.927 0.79
336 336 0 no 0.88 0.713
336 168 0 no 0.904 0.703
168 336 0 no 0.881 0.729
168 168 0 no 0.883 0.712
336 168 168 no 0.823 0.482
168 168 168 no 0.857 0.639

TABLE III: Hyperparameter search results

the regularization:

L2 Regularization ROC DeepWalk F1

10−3 0.510 0.276
10−4 0.886 0.745
10−5 0.871 0.713
10−6 0.904 0.719
10−7 0.888 0.718

A different L2 regularization improves the results a bit but
still does not beat the original NetGAN performance.

C. Interpolation between Free Variables and Neural Network

Due to the results above, we also investigate whether certain
degrees of freedom are necessary to restore the original Net-
GAN performance. Instead of generating the projection matrix
W only by the node attributes, we allow each nodes to “adjust”
by it’s own by training an additional free variable projection
matrix W free, like we do in the original implementation.
Then, we interpolate between the neural network and the free
variables. In specific, we perform following operation for the
up projection. Let α ∈ [0, 1],

Wup = αfWup
+ (1− α)W free

up

Setting α = 0 should restore the original NetGAN archi-
tecture while α = 1 provides the proposed modification. But,
the disadvantage of this method is we cannot generate larger
graphs anymore because we are using W free

up . The purpose of
this experiment is rather to debug NetGAN. Again, we use
Cora ML and 200000 as a maximum of iterations and left
all other parameters to the ones from table I. The size of the
hidden layer is 336.

Table IV and figure 7 shows our results. Setting α = 25% al-
ready worsens the Link Prediction scores while the DeepWalk
classification stays roughly constant, except for α = 75%.
We would expect that α = 0% performs best and as good as
our baseline. Interestingly enough, the first is true while the
latter is not. Again, this could have been caused due to high
variance within our measurement method. Figure 7 shows the

Free, 1− α Neur. Network, α ROC DeepWalk
Original - 0.949 0.783
100% 0% 0.924 0.761
75% 25% 0.872 0.766
50% 50% 0.866 0.759
25% 75% 0.874 0.727
0% 100% 0.876 0.765

TABLE IV: Interpolation Results

Fig. 7: Link Prediction ROC

link prediction ROC scores during training. We observe that
all α ∈ {25%, 50%, 75%, 100%} archive similar (bad) results.

The graphs in figure 8 visualize for each α the correspond-
ing Wup. Naturally, the plot for α = 0 looks like the plots
we have seen before in section II. Increasing α seems to
dissolve the clusters more and more. Nevertheless, the nodes
still cluster according to their true label in all figures. The
dissolving indicates why the link prediction and DeepWalk
performance are not as good as it was expected.

VI. CONCLUSION

In this guided research paper we presented one method to
better understand and debug NetGAN regarding its generation
process and we proposed two solutions how we could extend
NetGAN to generate graphs with different sizes. Even though
we showed that training was in general possible, we could
not beat the performance of the original implementation. One
possible reason could be that we have to conduct a larger
hyperparameter search for our neural network modification, for
example we did not experiment with the learning rate. Neither
did we try different preprocess techniques like dimensionality
reductions for our input graph to make our training better.
Also, by adding a new neural network to NetGAN, we increase
the size of parameters and more memory and time is necessary.
For smaller graphs like Cora ML this is not a huge problem
but for larger graphs this can make training more difficult due
to a smaller batch size or too small memory on the GPU. The
neural network proposal also made training slower. It would
be interesting to investigate how to speed it up again.



Fig. 8: W Visualization for Interpolation Experiment

REFERENCES

[1] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Net-
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VII. APPENDIX

A. Additional Random Walk Visualizations



Fig. 9: Cora ML, Additional Plot 1

Fig. 10: Cora ML, Additional Plot 2

Fig. 11: Citeseer, Additional Plot 1

Fig. 12: Citeseer, Additional Plot 2


